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Abstract In this paper, the basic frequency and time
response functions of the three-parameter Poynting–
Thomson solid and Jeffreys fluid are revisited. The
two rheological models find application in several ar-
eas of rheology, structural mechanics, and geophysics.
The relation between the analyticity of a frequency
response function and the causality of the correspond-
ing time response function is established by identify-
ing all singularities at ω = 0 after applying a partial
fraction expansion to the frequency response functions.
The strong singularity at ω = 0 in the imaginary part
of a frequency response function in association with
the causality requirement imposes the addition of a
Dirac delta function in the real part in order to make
the frequency response function well defined in the
complex plane. This external intervention, which was
first discovered by PAM Dirac, has not received the
attention it deserves in the literature of viscoelasticity
and rheology. The addition of the Dirac delta function
makes possible the application of time domain tech-
niques that do not suffer from violating the premise of
causality.
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Introduction

Traditionally, the linear theory of viscoelasticity has
evolved in an inductive manner starting from the “elas-
tic spring” (Hookean solid) and the “viscous dashpot”
(Newtonian fluid) and proceeding to more comprehen-
sive phenomenological models by linear combinations
of the two aforementioned basic elements. The behav-
ior of several isotropic materials when stressed at small
deformations gradients can be satisfactorily described
with combinations of “elastic springs” and “viscous
dashpots,” and it can be described by linear differential
equations with constant coefficients of the form,

[
M∑

m=0

αm
dm

dtm

]
τ (t) =

[
N∑

n=0

b n
dn

dtn

]
γ (t) , (1)

where τ (t) and γ (t) are the time histories of the stress
and the small-gradient strain; αm and b m are restricted
to real numbers and are the parameters of the con-
stitutive model, while the order of differential m and
n is restricted to integers. In this paper, we are con-
cerned with the integral representation of Eq. 1. Linear-
viscoelastic materials obey the so-called Boltzmann
superposition principle—that the output history can be
obtained as the convolution of the input history after
being convolved with the corresponding basic time re-
sponse function. The basic time response functions can
be obtained either by imposing an impulse or a unit-
step excitation in the constitutive model or by invert-
ing in the time domain the corresponding frequency
response functions of the constitutive models. Such
techniques are well known in the disciplines of rheology
(Ferry 1980; Bird et al. 1987; Tschoegl 1989), structural
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mechanics (Harris 1988), and automatic control (Bode
1959), among others.

The causal character of frequency response functions
enforces relations between their real and imaginary
parts (or their log-amplitude and phase). These rela-
tions are known as the Kramers–Kronig relations or
merely the Hilbert transform (Booij and Thoone 1982;
Fannin et al. 1993; Pritz 2005; Parot and Duperray 2007
and references reported therein).

Despite the significant progress in understanding the
microscopic topology of polymeric liquids (Everaers
et al. 2004), the Hilbert transform (Kramers–Kronig
relations) has always been a unique tool to validate
experimental results that establish the real or imagi-
nary parts of viscoelastic response functions (Tschoegl
1989; Caracciolo et al. 2001; Parot and Duperray 2007,
among others). It should be noted however that there
are some materials such as entangled polymer systems,
where the mechanical straining leads to a consider-
able enhancement of their microstructure and, in this
case, the Kramers–Kronig relations might be violated.
When, however, microstructural distortion is domi-
nant over microstructural enhancement, the Kramers–
Kronig relations are found to apply (Dhont and
Wagner 2001). Furthermore, experimental imperfec-
tions, including plate and edge conditions and loss of
material from the test fixture, may distort experimental
data, which appear to be inconsistent with the satis-
faction of the Kramers–Kronig relations. Such issues
require further elaboration (Vlassopoulos 2006).

More than a decade ago, Makris (1997) noticed that
frequency response functions that have a singularity
at ω = 0 in their imaginary part (this happens to all
practical models including the Hookean spring, the
Newtonian dashpot, and the Kelvin–Voigt and Maxwell
models) should be corrected by adding a Dirac delta
function in their real part. This operation ensures that
the resulting time response function is causal and,
within the context of generalized functions (Lighthill
1989), extends the fundamental relation between ana-
lyticity of a frequency response function and the causal-
ity of the corresponding time response function. The
presence of this extra Dirac delta function in the fre-
quency response functions, which does not appear in
standard vibration handbooks (Harris 1988) or in the
literature of rheology, appears indirectly in the time re-
sponse functions of simple viscoelastic models that have
been postulated by Giesekus (1995). The remarkable
intuitive results of Giesekus in the time domain are
in direct agreement with the fundamental properties
of analytic functions in the frequency domain. First,
in this paper, the agreement between the basic time

response function presented by Giesekus (1995) and
those obtained by Makris (1997), who required that the
real and imaginary parts of their frequency response
function should be Hilbert pairs, is shown.

Subsequently, the three-parameter Poynting–Thomson
solid and the three-parameter Jeffreys fluid are exam-
ined, and it is shown that they posses strictly proper
frequency response functions, which however have a
singularity at zero. Despite their frequency response
functions having more poles than zeros, the fact that
they have a pole at ω = 0 in their imaginary part
requires the addition of an external Dirac delta function
in their real part so that their corresponding time re-
sponse functions are causal. The paper concludes with
a table, which summarizes the basic frequency response
and time response functions of the three-parameter
solid and fluid models. The correct expressions for the
complex viscosity of the Poynting–Thomson solid and
the complex compliance of the Jeffreys fluid together
with the correct expressions of the corresponding relax-
ation modulus and retardation fluidity are new, original
results in the literature.

Basic frequency and time response functions

The linearity of Eq. 1 permits its transformation in the
frequency domain by using the Fourier transform

τ (ω) = [
G1 (ω) + iG2 (ω)

]
γ (ω) . (2)

where τ (ω) =
+∞∫
−∞

τ (t) e−iωtdt = F {τ (t)} and γ (ω) =
F {γ (t)} are the Fourier transforms of the stress and
strain histories, respectively, while G1(ω) + iG2(ω) is
the complex dynamic modulus of the model (Ferry
1980; Bird et al. 1987; Giesekus 1995)

G (ω) = G1 (ω) + iG2 (ω) =

N∑
n=0

b n (iω)n

M∑
m=0

am (iω)m

. (3)

G (ω) is a basic frequency response function that
relates a stress output to strain input. The numerator
of the right hand of Eq. 3 is a polynomial of degree
n and the denominator of degree m; therefore, G (ω)

has n zeros and m poles. A frequency response function
that has more poles than zeros (m > n) is called strictly
proper and results in a strictly causal time response
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function, which means that it is zero at negative times
and finite at the time origin.

The stress τ (t) in Eq. 1 can be computed in the time
domain with the convolution integral

τ (t) =
t∫

−∞
q (t − ξ) γ (ξ) dξ, (4)

where q(t) memory function of the model (Bird et al.
1987), defined as the resulting stress at time t due to an
impulsive strain input at time ξ (ξ < t) and is the inverse
Fourier transform of the complex dynamic modulus

q (t) = 1

2π

+∞∫
−∞

G (ω) eiωtdω. (5)

The inverse Fourier transform given by Eq. 5 converges

only when
+∞∫
−∞

∣∣G (ω)
∣∣dω < ∞; therefore, q(t) exists in

the classical sense only when G (ω) is a strictly proper
function (m > n). However, there are cases where
strictly proper frequency response functions have a
pole at zero ω = 0, and in this case, a special treatment
is required in their real part in which an addition of
an external Dirac delta function is needed. When the
number of poles is equal to the number of zeros (m =
n), the frequency response function of the model is
simply proper and results to a time response function
that has a singularity at the time origin because of
the finite limiting value of the dynamic stiffness at
high frequencies. This means that, in addition to the
hereditary effects, the model responds instantaneously
to a given input. When the number of poles is less than
the number of zeros (m < n), the frequency response
function of the model is improper (Rohrs et al. 1993).

The inverse of the complex dynamic modulus is the
complex dynamic compliance (Pipkin 1986)

J (ω) = J1 (ω) + iJ2 (ω) = 1

G1 (ω) + iG2 (ω)
, (6)

which is a frequency response function that relates a
strain output to a stress input. From Eqs. 3 and 6, it
is clear that, when a phenomenological model has a
strictly proper complex modulus, it has an improper
complex compliance and vise versa. Accordingly, when
the causality of a proposed model is a concern, it is
important to specify what is the input and what is the
output.

When the dynamic compliance J (ω) is a proper
frequency response function, the strain history γ (t) in

Eq. 1 can be computed in the time domain via convolu-
tion integral

γ (t) =
t∫

−∞
ϕ (t − ξ) τ (ξ) dξ, (7)

where ϕ(t) = retardation fluidity (Giesekus 1995), de-
fined as the resulting strain history at time t due to an
impulsive stress input at time ξ (ξ < t), and it is the
inverse Fourier transform of the dynamic compliance.

ϕ (t) = 1

2π

+∞∫
−∞

J (ω) eiωtdω. (8)

In structural mechanics, the equivalent of the retarda-
tion fluidity is known as the impulse response func-
tion, h(t) (Veletsos and Verbic 1974; Makris 1997).
Expressions of the retardation fluidity of the Hookean
solid, the Newtonian fluid, the Kelvin–Voigt solid, and
Maxwell fluid have been presented by Giesekus (1995);
however, the expression of retardation fluidity of the
three-parameter Jeffreys’ fluid has not been available
in the literature. The lack of this expression was part of
the motivation of this paper. Another useful frequency
response function of a phenomenological model is the
complex viscosity η(ω) = η1(ω) + iη2(ω), which relates
a stress output to a strain rate input

τ (ω) = [η1 (ω) + iη2 (ω)] γ̇ (ω) , (9)

where γ̇ (ω) = iωγ (ω) = Fourier transform of the
strain rate time history. In structural mechanics, the
equivalent of the complex viscosity at the force–
velocity level is known as the impedance function
Z (ω) = Z1 (ω) + iZ2 (ω). For the linear viscoelastic
model given by Eq. 1, the complex viscosity of the
model is

η (ω) = η1 (ω) + iη2 (ω) =

N∑
n=0

b n (iω)n

m=M∑
m=0

am (iω)m+1

. (10)

The stress τ (t) in Eq. 1 can be computed in the time
domain with an alternative convolution integral

τ (t) =
t∫

−∞
G (t − ξ)

dγ (ξ)

dξ
dξ, (11)

where G(t) is the relaxation modulus of the model
defines as the resulting stress at the present time, t, for
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a unit-step displacement at time ξ (ξ < t) and is the
inverse Fourier transform of the complex viscosity

G (t) = 1

2π

+∞∫
−∞

η (ω) eiωtdω, (12)

Expressions for the relaxation modulus, G(t), of vari-
ous simple viscoelastic models are well known in the
literature (Bird et al. 1987; Giesekus 1995); however,
the expression of the relaxation modulus of the three-
parameter Poynting–Thomson solid has not been avail-
able. This issue is addressed in this paper.

Equation 10 indicates that, if the complex dynamic
modulus of a model, G (ω), is a simple proper function,
then the complex viscosity of the model η(ω), is a
strictly proper function; therefore, the relaxation mod-
ulus of the model G(t) is finite; whereas the memory
function q(t) has a singularity at the time origin. The
inverse of the complex dynamic viscosity is the complex
dynamic fluidity (Giesekus 1995)

ϕ (ω) = ϕ1 (ω) + iϕ2 (ω) = 1

η1 (ω) + iη2 (ω)
, (13)

which is a frequency response function that relates a
strain rate output to a stress input. When the dynamic
fluidity is a proper frequency response function the
rate of strain history γ̇ (t) can be computed in the time
domain via the convolution integral

γ̇ (t) =
t∫

−∞
ψ (t − ξ) τ (ξ) dξ (14)

where ψ(t) is the impulse strain rate response function
defined as the resulting strain rate output at time t for
an impulsive stress input at time ξ (ξ < t) and is the
inverse Fourier transform of the dynamic fluidity

ψ (t) = 1

2π

+∞∫
−∞

ϕ (ω) eiωtdω. (15)

The hidden Dirac delta function

The need for the addition of a Dirac delta function in
the real part of frequency response functions, that their
imaginary part has a singularity at ω = 0 + i0, was
discovered by Makris (1997) and is illustrated in this
section by examining the simplest phenomenological
model—the linear elastic spring. For a Hookean solid,
Eq. 1 reduces to

τ (t) = Gγ (t) , (16)

and from Eq. 3, the complex dynamic modulus is
merely

G (ω) = G + i0, (17)

while Eq. 5 yields that the memory function,

q (t) = Gδ (t − 0) . (18)

Now, Eq. 9 suggests that the dynamic viscosity of
the Hookean solid (strain rate frequency response
function)

η (ω) = η1 (ω) + iη2 (ω) = G (ω)

iω
, (19)

and according to Eq. 19, the dynamic viscosity (im-
pedance) of the Hookean solid is

η (ω) = 0 − i
G
ω

. (20)

The inverse Fourier transform, 1
2π

+∞∫
−∞

− i
ω

eiωtdω =
1
2 sgn (t), is well known in the literature (Morse and
Feshbach 1953), and according to Eq. 12, given the
expression offered by Eq. 20, the relaxation function of
the Hookean solid assumes the expression

G (t) = 1

2π

+∞∫
−∞

−i
G
ω

eiωtdω = 1

2
Gsgn (t). (21)

The reader recognizes that, although the complex
dynamic viscosity of the Hookean spring, given by
Eq. 20, is a strictly proper function, the resulting re-
laxation function is the erroneous non-causal signum
function, which maintains a finite value along the entire
negative time axis. In fact, Eq. 21 erroneously suggests
that the elastic spring will produce as much response at
negative times (prior to the excitation) as the response
produced following the excitation. The origin of this
causality violation is that, although the expression of
the complex viscosity, η(ω), given by Eq. 20 is a strictly
proper frequency response function, the real and imag-
inary parts of η(ω) given by Eq. 20 are not Hilbert pairs
(Tschoegl 1989). The violation of causality shown by
Eq. 21 can be cured by requiring the real and imaginary
parts (Eq. 20) to be Hilbert pairs or, in other words, to
satisfy Kramers–Kronig relations

η1 (ω) = − 1

π

+∞∫
−∞

η2 (x)

x − ω
dx, η2 (ω) = 1

π

+∞∫
−∞

η1 (x)

x − ω
dx.

(22)
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The imaginary part, −G
ω

, of η(ω) given by (20), has as

Hilbert transform the function, Gπδ(ω–0)—a function
that is everywhere zero yet singular at the static limit.
This can be shown immediately from the second re-
lation of Eq. 22 after making the change of variables
ξ = x – ω, dξ = dx.

η2 (ω) = 1

π

+∞∫
−∞

πδ (x − 0)

x − ω
dx =

+∞∫
−∞

πδ [ξ − (−ω + 0)]

ξ
dξ

= 1

−ω + 0
= 1

ω
(23)

Accordingly, the real part of the complex viscosity of
the Hookean spring is η1 (ω) = πGδ (ω − 0) (not zero)
and the correct value of the complex viscosity of the
Hookean spring is not Eq. 20 but the equation below:

η (ω) = πG
[
δ (ω − 0) − i

1

πω

]
. (24)

By inverting back in the time domain Eq. 24, the correct
expression for the relaxation modulus of the Hookean
spring is recovered

G (t) = 1

2π

+∞∫
−∞

πG
[
δ (ω − 0) − i

1

πω

]
eiωtdω

= 1

2
G

[
1 + sgn (t)

] = GH (t) (25)

where H(t) is the Heaviside step function and the cor-
rect causal result is recovered (see Table 1, Giesekus
1995). The above calculation shows that the require-
ment that the real and imaginary part of the complex
dynamic viscosity to be Hilbert pairs imposes the pres-
ence of a Dirac delta function in its real part, which
when transformed in the time domain offers the so
much needed unity, which lifts the signum function
by the necessary amount to convert it to the causal
Heaviside function. The presence of a Dirac delta func-
tion as the real part of the complex viscosity extends
the concept of analyticity to generalized functions and

essentially makes the reciprocal function
1

ω
well de-

fined in the neighborhood ω = 0. The intimate relation
between the reciprocal function and the delta function
appearing in the right-hand side of Eq. 24 was first
noticed by Dirac (1958).

The final result of Eq. 28, G(t) = GH(t), has been
presented in the paper by Giesekus (1995) who fol-
lowed faithfully the definition of the relaxation mod-
ulus and imposed in the constitutive equation of the
Hookean solid, τ (t) = Gγ (t) a step strain excitation
γ (t) = γ H(t). In this paper, the same result is recov-

ered with a rigorous mathematical formulation, which
emerges from the fundamental relation between the
causality of the time response function and the analytic-
ity of the corresponding frequency response functions,
which herein is extended in the case of generalized
functions. This mathematical formulation is further ap-
plied in this paper in an effort to compute the basic
frequency response functions of the three-parameter
solid and fluid models.

Complex modulus, compliance, viscosity, and fluidity
of simple rheological models

Background

All simple linear rheological models such as the
Hookean solid, the Newtonian fluid, the Kelvin–Voigt
solid, the Maxwell fluid, together with the three-
parameter Poynting–Thomson solid and Jeffreys fluid
have either a complex compliance or complex viscosity
function with an imaginary term that has a singularity at
ω = 0. By using the properties of the Hilbert transform
and the associated Kramers–Kronig relation, Makris
(1997) corrected the frequency response functions of
the first four models by adding a delta function in
their real part. Table 1 presents the corrected basic
frequency response functions, and the corresponding
time response functions of the first four elementary
rheological models at the stress–strain level. This table
was first published by Makris (1997) within the context
of structural mechanics at the force–displacement level.
The appended Dirac delta functions appearing in the
complex viscosity (impedance) of the Hookean and
Kelvin–Voigt solids and in the complex compliance
(flexibility) of the Newtonian and Maxwell fluids are
marked in bold face. Similarly in bold face are marked
in the corresponding time response functions the one-
half values resulting from the Fourier transform of the
appended Dirac delta functions, which convert the non-

causal signum functions,
1

2
sgn (t), into the causal Heav-

iside functions = 1

2
+ 1

2
sgn (t) = H (t). It is remarkable

that all causal Heaviside functions,
1

2
+ 1

2
sgn (t), ap-

pearing in Table 1 of this paper, appear also in the
paper by Giesekus (1995), which however, does not
addresses their implication to the corresponding fre-
quency response functions.

In this paper, the same methodology is applied to the
three-parameter Poynting–Thomson solid and Jeffreys
fluid. Figure 1 shows schematics of the two models
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Fig. 1 Alternative
configuration of the
three-parameter
Poynting–Thomson solid
(left) and the three-parameter
Jeffreys fluid (right)
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of interest as alternative combinations of springs and
dashpots.

The Poynting–Thomson solid

With reference to Fig. 1 (left), the constitutive equation
of the three parameter Poynting–Thomson solid is

τ(t) + λ1
dτ(t)

dt
= G

[
γ (t) + λ2

dγ (t)
dt

]
(26)

For the top configuration of Fig. 1, λ1 = η

G1 + G2
=

relaxation time, λ2 = η

G2
= the retardation time (λ2 >λ1)

and G = G1G2

G1 + G2
, while for the bottom configuration

of Fig. 1, λ1 = η

G2
, λ2 = η

G1 + G2

G1G2
and G = G1.

The Poynting–Thomson solid, also known as the
three-parameter solid, is a popular viscoelastic model
which finds applications from the characterization of
solid polymers (Kytopoulos et al. 2003), the modeling
of bone tissue (Mezerova 2004) and rock strata (Zhifa
et al. 2001).

The complex modulus of the Poynting–Thomson
solid is

G(ω) = G
1 + iωλ2

1 + iωλ1
= G

λ1

(
λ2 − λ2 − λ1

1 + iωλ1

)
(27)
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which is a simple proper transfer function since the
number of poles equals the numbers of zeros. In the
right-hand side of Eq. 29, we have separated the finite
limiting value of the complex dynamic modulus at the
high frequency limit, which, when transferred in the
time domain, yields a singularity at the time origin of
the memory function

q(t) = 1

2π

+∞∫
−∞

G(ω)e−iωtdω

= G
λ1

[
λ2δ(t − 0) − (

λ2

λ1
− 1)e− t

λ1 H(t)
]

(28)

Similarly, the complex dynamic compliance of the
Poynting–Thomson model is a simple proper transfer
function

J (ω) = 1

G (ω)
= 1

G
1 + iωλ1

1 + iωλ2
= 1

Gλ2

(
λ1 + λ2 − λ1

1 + iωλ2

)

(29)

and the retardation fluidity also exhibits a feeble singu-
larity at the time origin.

ϕ (t) = 1

2π

+∞∫
−∞

J (ω)eiωtdω

= 1

Gλ2

[
λ1δ (t − 0) +

(
1 − λ1

λ2

)
e− t

λ2

]
. (30)

The complex viscosity of the Poynting–Thomson
solid is

η (ω) = G (ω)

iω
= G

1 + iωλ2

iω (1 + iωλ1)
, (31)

which is a strictly proper function, since the number
of poles is larger than the number of zeros. At the
same time, the complex viscosity given by Eq. 31 has a
singularity at ω = 0 and a special treatment is required.
Partial fraction expansion of the polynomial ratio of
Eq. 31 yields

η (ω) = G (λ2 − λ1)

[
1

1 + ω2λ2
1

− i
ωλ1

1 + ω2λ2
1

]
− iG

1

ω
.

(32)

The quantity within the brackets of Eq. 32 is merely the
complex dynamic viscosity of the Maxwell element (see
Table 1), and when transformed in the time domain, it
yields a causal response, exp (−t/λ1), since the real and
imaginary parts in the brackets of Eq. 32 are Hilbert
pairs (Makris 1997). What remains in the frequency

response function of Eq. 32 is the last term, −iG
1

ω
,

which is merely the uncorrected complex viscosity of
the Hookean solid (see Eq. 20). Its Hilbert transform
is offered by Eq. 24, and the correct expression for the
complex viscosity of the Poynting–Thomson’s model is

η (ω) = G (λ2 − λ1)

[
1

1 + λ2
1ω

2
− i

ωλ1

1 + λ2
1ω

2

]

+πG
[
δ (ω − 0) − i

1

πω

]
. (33)

With the addition of the Dirac delta function, πGδ

(ω–0), in Eq. 32, the real and imaginary parts within
brackets of Eq. 33 are now Hilbert pairs, and the in-
verse Fourier transform of Eq. 33 yields a relaxation
modulus that is causal

G (t) = G
[

1

2
+ 1

2
sgn (t)

]
+ G

(
λ2

λ1
− 1

)
e− t

λ1 . (34)

The complex dynamic fluidity of the Poynting–
Thomson solid is an improper frequency response
function

ϕ (ω) = 1

η (ω)
= 1

G
iω (1 + iωλ1)

1 + iωλ2
(35)

and its impulse strain rate response function is com-
puted with Eq. 15. The inverse Fourier transform of
Eq. 35 yields the impulse strain rate response function
that is singular at the time origin.

ψ (t) = 1

Gλ2

[
λ1

dδ (t − 0)

dt
+

(
1 − λ1

λ2

)
δ (t − 0)

− 1

λ2

(
1 − λ1

λ2

)
e− t

λ2

]
(36)

Table 2 summarizes the basic frequency response and
time response functions of the two models of interest in
this paper.

The Jeffreys model

With reference to Fig. 1 (right), the constitutive equa-
tion of the three-parameter Jeffreys fluid is

τ (t) + λ1
dτ (t)

dt
= η

[
dγ (t)

dt
+ λ2

d2γ (t)
dt2

]
(37)

For the top configuration of Fig. 1, λ1 = η1 + η2

G
=

relaxation time, λ2 = η2

G
= retardation time (λ1 > λ2)

and η = η1; while for the bottom configuration of

Fig. 1, λ1 = η2

G
, λ2 = 1

G
η1η2

η1 + η2
and η = η1 + η2.

The Jeffreys fluid has been a popular visoelastic
model, which has been initially proposed by Jeffreys
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Table 2 Basic frequency response and time response functions of the three-parameter models

Three-parameter Poynting–Thomson solid Three-parameter Jeffreys fluid

Constitutive equation τ (t) + λ1
dτ (t)

dt
= G

[
γ (t) + λ2

dγ (t)
dt

]
τ (t) + λ1

dτ (t)
dt

= η

[
dγ (t)

dt
+ λ2

d2γ (t)
dt2

]

Complex modulus: G (ω)
G
λ1

[
λ2 − λ2 − λ1

1 + ω2λ2
1

+ i
ωλ1 (λ2 − λ1)

1 + ω2λ2
1

]
ηω

i − ωλ2

1 + iωλ1

Complex compliance: J (ω)
1

Gλ2

[
λ1 + λ2 − λ1

1 + ω2λ2
2

− i
ωλ2 (λ2 − λ1)

1 + ω2λ2
2

]
λ1 − λ2

η

[
1

1 + λ2
2ω

2
− i

ωλ2

1 + λ2
2ω

2

]

+π

η

[
δ (ω−0) − 1

πω

]

Complex viscosity, η(ω) G (λ2 − λ1)

[
1

1 + λ2
1ω

2
− i

ωλ1

1 + λ2
1ω

2

]
η

λ1

[
λ2 + λ1 − λ2

1 + ω2λ2
1

− i
ωλ1 (λ1 − λ2)

1 + ω2λ2
1

]

+πG
[
δ (ω−0) − i

1

πω

]

Complex fluidity, ϕ(ω)
iω
G

1 + iωλ1

1 + iωλ2

1

ηλ2

[
λ1 − λ1 − λ2

1 + ω2λ2
2

+ i
ωλ2 (λ1 − λ2)

1 + ω2λ2
2

]

Memory function, q(t)
G
λ1

[
λ2δ (t − 0) −

(
λ2

λ1
− 1

)
e− t

λ1

]
η

λ1

[
λ2

dδ (t − 0)

dt
+

(
1 − λ2

λ1

)
δ (t − 0)

− 1

λ1

(
1 − λ2

λ1

)
e− t

λ1

]

Retardation fluidity, ϕ(t)
1

Gλ2

[
λ1δ (t − 0) +

(
1 − λ1

λ2

)
e− t

λ2

]
1

η

[
1
2

+ 1

2
sgn (t) +

(
λ1

λ2
− 1

)
e− t

λ2

]

Relaxation modulus, G(t) G
[

1
2

+ 1

2
sgn (t)

]
+ G

(
λ2

λ1
− 1

)
e− t

λ1
η

λ1

[
λ2δ (t − 0) + G

(
1 − λ2

λ1

)
e− t

λ1

Impulse strain rate
1

Gλ2

(
λ1

dδ (t − 0)

dt
+

(
1 − λ1

λ2

)
δ (t − 0)

1

ηλ2

(
λ1δ (t − 0) −

(
λ1

λ2
− 1

)
e− t

λ2

)
response function, ψ(t)

− 1

λ2

(
1 − λ1

λ2

)
e− t

λ2

)

(1929) to model the viscoelastic behavior of earth strata
and subsequently enjoyed wide acceptance by rhelo-
gists in studies ranging from the onset of convection
in viscoelastic fluids (Lebon et al. 1994) to the under-
standing of viscoelastic flow in curved ducts (Manos
et al. 2006) and peristaltic transport (Kothandapani and
Srinivas 2008).

The complex modulus of the Jeffreys fluid is

G (ω) = ηω
i − ωλ2

1 + iωλ1
(38)

which is an improper frequency response function,
since the number of poles is less than the numbers of
zeros and its memory function is computed as

q (t) = η

λ1

[
λ2

dδ (t − 0)

dt
+

(
1 − λ2

λ1

)
δ (t − 0)

− 1

λ1

(
1 − λ2

λ1

)
e− t

λ1

]
(39)

The complex dynamic compliance of the Jeffreys’
model is

J (ω) = 1

G (ω)
= 1

η

1

ω

1 + iωλ1

i − ωλ2
(40)

which is a strictly proper function; nevertheless, it has a
singularity at ω = 0 and a special treatment is required.
Partial fraction expansion of the polynomial ratio of
Eq. 40 yields

J (ω) = λ1 − λ2

η

[
1

1 + λ2
2ω

2
− i

ωλ2

1 + λ2
2ω

2

]
− i

η

1

ω
(41)

The quantity within the brackets of Eq. 41 is again the
complex dynamic viscosity of the Maxwell element (see
Table 1), and when transformed in the time domain, it
yields a causal response, exp (−t/λ1), since the real and
imaginary parts in the brackets of Eq. 41 are Hilbert
pairs (Makris 1997). The remaining part in Eq. 41 is

the imaginary quantity, − i
η

1

ω
. Its Hilbert transform is
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π

η
δ (ω − 0), and therefore, the correct expression for

the complex compliance of the Jeffreys model is

J (ω) = λ1 − λ2

η

[
1

1 + λ2
2ω

2
− i

ωλ2

1 + λ2
2ω

2

]

+π

η

[
δ (ω − 0) − 1

πω

]
(42)

With the addition of the Dirac delta function, πδ(ω–0),
in Eq. 41, the real and imaginary part within both
parenthesis of Eq. 42 are Hilbert pairs, and the inverse
Fourier transform of Eq. 42 yields a retardation fluidity
function that is causal

ϕ (t) = 1

η

[
1

2
+ 1

2
sgn (t) +

(
λ1

λ2
− 1

)
e− t

λ2

]
. (43)

The complex viscosity of the Jeffreys’ fluid is

η (ω) = G (ω)

iω
= η

i − ωλ2

i − ωλ1
= η

[
λ2

λ1
+ i

λ1 − λ2

λ1 (i − ωλ1)

]
,

(44)

which is a simple proper frequency response function
given that the number of poles equals the number of
zeros. In the right-hand side of Eq. 44, we have sepa-
rated the finite-limiting value of the complex viscosity
at the high frequency limit, which when transformed in
time domain, it yields a singularity at the tie origin of
the relaxation stiffness

G (t) = η

λ1

[
λ2δ (t − 0) + G

(
1 − λ2

λ1

)
e− t

λ1

]
(45)

Equation 45 is well known in the literature (Bird et al.
1987 among others). Similar to the complex viscosity,
the complex fluidity of the Jeffreys fluid is a sim-
ple proper frequency response function, and its corre-
sponding impulse strain rate response function yields
a singularity of the time origin. Table 2 summarizes
all the basic frequency response and time response
functions of the Poynting–Thomson solid and Jeffreys
fluid examined in this paper. The original contribution
of this paper is the addition of the Dirac delta functions
marked with bold face in the complex viscosity of the
Poynting–Thomson solid and the complex compliance
of the Jeffreys fluid. Similarly, in bold face are marked
in the corresponding time response functions the one-
half values resulting from the Fourier transform of the
appended Dirac delta functions, which convert the non-

causal signum functions
1

2
sgn (t) to the causal Heaviside

Function = 1

2
+ 1

2
sgn (t) = H (t) .

Conclusions

In this paper, the basic frequency response functions
of the three-parameter Poynting–Thomson solid and
the three-parameter Jeffreys fluid are revisited. Each of
these rheological models has either a dynamic complex
viscosity or a dynamic complex compliance with an
imaginary term that has a singularity at ω = 0. Using
the properties of the Hilbert transform and the asso-
ciated Kramers–Kronig relations, it is shown that such
frequency response functions should be corrected by
adding a delta function in the real part. The presence
of a Dirac delta function in the real part extends the
concept of analyticity to generalized functions and es-
sentially makes the corresponding frequency response
functions well defined in the neighborhood ω = 0. This
operation ensures causality of the corresponding time
response functions, which provide directly the stress or
the strain histories via convolution integrals.
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