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1 Summary of three-dimensional large-deformation rate-dependent

elastic-viscoplastic theory

1. The Kinematical Kröner-Lee decomposition

F = FeFp, with detFp = 1, (1)

in which F is the deformation gradient, while Fe and Fp are the elastic and plastic distortions.

2. The polar decomposition

Fe = ReUe (2)

of the elastic distortion Fe, and the spectral decomposition

Ue =

3
∑

i=1

λe
i r

e
i ⊗ re

i , (3)

of the right elastic stretch tensor Ue. Here {λe
i } and {re

i } are, respectively, the positive eigenvalues
(principal elastic stretches) and orthonormal eigenvectors of Ue. From this we define the Hencky
strain (logarithmic strain measure) based on the right elastic orthonormal basis

Ee = lnUe =

3
∑

i=1

(lnλe
i ) r

e
i ⊗ re

i . (4)

3. Next, for isotropic materials, we consider a specialized equation for the elastic free energy

ψ = G|Ee|2 +
1

2
(K − 2

3
G)(trEe)2, (5)

which yields the symmetric Mandel stress (driving stress for plastic flow)

Me = 2GEe + (K − 2

3
G)(trEe)1 (6)

and the Cauchy stress is obtained using

∗Refer to Professor Lallit Anand’s 2.073 plasticity notes for detailed theory on which this summary is based.
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T = Je−1ReMeRe⊤, Je = detFe = detF (since detFp = 1). (7)

Next, we define an equivalent shear stress as

τ̄
def
=

1√
2
|Me

0| , (8)

noting that this can be thought of as an invariant of Me.

4. Flow Rule: Fp evolves as

Ḟp = DpFp, (9)

with

Dp = νp Me
0

2τ̄
, (10)

where
νp def

=
√

2|Dp|. (11)

Equivalent plastic shear strain rate νp is given by a flow function

νp = f(τ̄ , S) with νp = 0 when τ̄ = 0, (12)

where S is an internal variable which may evolve with deformation.

An example of a commonly used rate-sensitive flow rule function is the power-law function

νp = ν0

( τ̄

S

)(1/m)

, (13)

where ν0 is a parameter with units of 1/time, S has units of stress (flow strength) and is assumed to
be a constant (for simplicity we neglect evolution of S), and m is a rate sensitivity parameter. As the
value of m decreases, the material becomes more and more rate-independent. The inverted form of
(13) is

τ̄ = S

(

νp

ν0

)m

. (14)

The power-law function allows one to characterize nearly rate-independent behavior when m is very
small.

Note that in contrast to the rate-independent theory, the plastic strain-rate is nonzero whenever the
stress is nonzero: there is no elastic range in which the response of the material is purely elastic, and
there are no considerations of a yield condition, a consistency condition, loading/unloading conditions,
and so forth.

Note for a special case of m = 1, we obtain a flow rule that follows Newtonian viscosity.

We can also introduce a rate-independent initial-yield with τe
def
= τ̄ − τy, and writing the power-law

form of the flow rule as:

νp =







0 if τe ≤ 0,

ν0

(τe
S

)(1/m)

if τe > 0.
(15)

For a special case where m = 1 (Newtonian viscosity), the above flow rule can be used for a Bingham
material as we have

νp =







0 if τ̄ − τy ≤ 0,

ν0

( τ̄ − τy
S

)

if τ̄ − τy > 0,
(16)

where S
ν0

is the Newtonian viscosity.
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2 Summary of one-dimensional large-deformation rate-dependent

elastic-viscoplastic theory

This section presents a summary of an approximate one-dimensional version of the theory. The approximation

is primarily in that we cannot account for Poisson’s-type lateral contractions, and attendant volume changes,

in a one-dimensional setting. The underlying constitutive equations relate the following basic fields:

U > 0, stretch (defined as l/l0, ratio of deformed length l
with the original length l0),

U = UeUp elastic-plastic decomposition of U ,

Ue elastic part of the stretch,

Up, plastic part of the stretch,

σ, Cauchy stress.

1. Strain

ǫe = lnUe (17)

2. Free energy

ψe =
1

2
E (ǫe)2 (18)

3. Cauchy stress
σ = E ǫe (19)

4. Flow rule

U̇p = DpUp, Dp = ǫ̇psign(σ), with ǫ̇p ≥ 0, (20)

where equivalent tensile plastic strain rate ǫ̇p needs an evolution equation. With σ̄
def
= |σ|, the

power-law function for the flow rule is

ǫ̇p = ǫ̇0

( σ̄

S

)(1/m)

, (21)

where ǫ0 is a parameter with units of 1/time, S has units of stress (it can evolve with deformation
but for simplicity we neglect evolution of S and take it to be a constant), and m is a rate sensitivity
parameter. m→ 0, is the rate-independent limit.

3 Relationship between material parameters in 1D model with

material parameters in 3D model

In the above equations, except for the parameters ν0 and S, the values of the one-dimensional material
parameters are unchanged when used in the three-dimensional equations. Since the stress-power should be
same for the three-dimensional and one-dimensional cases, we have

τ̄ ν = σ̄|ǫ̇|. (22)

Also note that the equivalent shear stress τ̄ is the mises-stress and for the one-dimensional case it relates to
tensile stress σ̄ as

τ̄ =
1√
3
σ̄, (23)

which with (22) gives

ν =
√

3 |ǫ̇|. (24)
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The parameters ν0 and S may be converted from the one-dimensional compression/tension form to the
three-dimensional shear form using

ν0 =
√

3 ǫ̇0, S(3D) =
1√
3
S(1D). (25)

4 One-dimensional small-deformation rate-dependent elastic-

viscoplastic theory

For small deformations, we don’t need to distinguish between the deformed configuration and the original
configuration (an approximation valid only for small deformations, typically up to the strains of the order
of ≈ 0.2%). We assume that the total strain ǫ may be additively decomposed as

ǫ = ǫe + ǫp, (26)

and call ǫe and ǫp the elastic and plastic parts of the strain, respectively. Hence, the strain rate also
admits the decomposition

ǫ̇ = ǫ̇e + ǫ̇p. (27)

The elastic stress-strain relation giving Cauchy stress is now

σ = E ǫe = E (ǫ− ǫp). (28)

For rest of the analysis we can use the flow rule relation in section 2.
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