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1 Introduction

The purpose of these notes is to develop a constitutive theory for finite-deformation isotropic plasticity
with isotropic strain-hardening under isothermal conditions at fixed temperature ϑ = constant, and in
the absence of temperature gradients.

2 Kinematics

The Kröner–Lee decomposition

Physical considerations of the mechanisms of elastic–plastic deformation of a solid associate a notion of
a material structure with the solid that may be stretched and rotated, together with a notion of defects
capable of flowing through that structure. In the finite deformation theory of elastic-plastic solids, we
mathematize this picture with a kinematical constitutive assumption that the deformation gradient F(X)
admit a multiplicative decomposition

F(X) = Fe(X)Fp(X), (2.1)

in which:

(i) Fe(X) represents the local deformation of material (near X) due to stretch and rotation of the
material structure;

(ii) Fp(X) represents the local deformation of material (near X) due to the flow of defects through
that structure.

We refer to (2.1) as the Kröner–Lee decomposition.1 Consistent with our assumption that

J = det F > 0,

we assume that
Je = det Fe > 0, Jp = det Fp > 0, (2.2)

so that both Fe and Fp are invertible.
In discussing the Kröner–Lee decomposition it is important to fully understand the differences be-

tween the tensor fields F, Fe, and Fp. First of all, while F = ∇χ is the gradient of a point field, in
general there is no point field χ

p such that Fp = ∇χ
p, nor is there a point field χ

e such that Fe = ∇χ
e.

1Kröner (1962), Lee (1969).
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Thus we can at most describe the physical nature of the tensor fields Fe and Fp through their pointwise
mapping properties as linear transformations. With this in mind, consider the formal relation

dx = FdX. (2.3)

Equation (2.3) represents a mapping of an infinitesimal neighborhood of X in the undeformed body to
an infinitesimal neighborhood of x = χt(X) in the deformed body and characterizes F pointwise as a
linear transformation of material vectors to spatial vectors. As is clear from (2.3) and the Kröner–Lee
decomposition (2.1),

dx = FeFpdX. (2.4)

For want of a better notation, let dl denote FpdX,2

dl = FpdX,

so that, by (2.4),
dx = Fedl.

Thus, the output of the linear transformation Fp must coincide with the input of the linear transformation
Fe; that is,

the range of Fp = the domain of Fe. (2.5)

We refer to this common space as the structural space or intermediate space.3

Here and in what follows, we use the following terminology:

(a) the reference space is the ambient space for the reference body, with vectors in that space referred
to as material vectors.

(b) the structural space as the ambient space for the microscopic structure, with vectors in that space
referred to as structural vectors;

(c) the observed space as the ambient space for the deformed body, with vectors in that space referred
to as spatial vectors.

Thus Fp and Fe have the following mapping properties (Figure 1):

(P1) Fp maps material vectors to structural vectors;

(P2) Fe maps structural vectors to spatial vectors.

Further, we refer to a tensor field G as a spatial tensor field if G maps spatial vectors to spatial
vectors, a material tensor field if G maps material vectors to material vectors; in the same vein, we now
refer to G as an structural tensor field if G maps structural vectors to structural vectors.

Elastic and plastic stretching and spin

The velocity gradient
L = grad χ̇

is related to the deformation gradient F through the identity

L = ḞF−1,

and we may use the Kröner–Lee decomposition (2.1) to relate L to Fp and Fe. By (2.1),

Ḟ = ḞeFp + FpḞp, F−1 = Fp−1Fe−1, (2.6)

2We do not mean to infer from this that there is a vector l with differential dl.
3Generally referred to as the relaxed or intermediate configuration.
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Figure 1: Schematic of the Kröner–Lee decomposition. The dark grey circles denote infinitesimal neigh-
borhoods of the points X and x = χt(X). The arrows are meant to indicate the mapping properties of
the linear transformations F, Fp and Fe.

and therefore

L = (ḞeFp + FeḞp)(Fp−1Fe−1)

= ḞeFe−1 + Fe(ḞpFp−1)Fe−1.

Thus, defining elastic and plastic distortion-rate tensors Le and Lp through the relations

Le = ḞeFe−1 and Lp = ḞpFp−1, (2.7)

we have the decomposition
L = Le + FeLpFe−1. (2.8)

We define the elastic stretching De and the elastic spin We through the relations

De = 1
2 (Le + Le⊤),

We = 1
2 (Le − Le⊤).

}

(2.9)

Similarly, we define the plastic stretching Dp and the plastic spin Wp through

Dp = 1
2 (Lp + Lp⊤),

Wp = 1
2 (Lp − Lp⊤).

}

(2.10)

A general experimental observation is that at the microstructural scale, plastic flow by dislocation
motion induces negligibly small changes in volume.4 Consistent with this, we assume that at the macro-
scopic scale plastic flow does not induce a change in volume, and accordingly we assume that

det Fp ≡ 1. (2.11)

Then, since
˙det Fp = (det Fp)(trLp) = (det Fp)(trDp) = 0,

4Cf., e.g. Bridgeman (1944), Spitzig and Richmond (1976).
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we find that Lp and (hence) Dp are deviatoric,

trLp = trDp = 0. (2.12)

Also, since J = det F = det Fe det Fp, it follows that

J = det F = det Fe = Je, (2.13)

and hence that
J̇ = J trDe. (2.14)

Consequences of (P1) and (P2) on page 2, (2.7), (2.9), and (2.10) are that

(P3) Le and De are spatial tensor fields;

(P4) Lp, Dp, and Wp are structural tensor fields.

Elastic and plastic polar decompositions

As in the standard polar decompositions

F = RU = VR

of the deformation gradient F into stretch and rotation tensors, our definition of the elastic and plastic
stretch and rotation tensors is based on the right and left polar decompositions:

Fe = ReUe = VeRe,

Fp = RpUp = VpRp.

}

(2.15)

Here Re and Rp are the elastic and plastic rotations, Ue and Ve are the right and left elastic

stretch tensors, and Up and Vp are the right and left plastic stretch tensors,5 so that,

Ue =
√

Fe⊤ Fe,

Ve =
√

FeFe⊤,






(2.16)

and
Up =

√
Fp⊤ Fp,

Vp =
√

FpFp⊤.






(2.17)

Further, the right and left elastic Cauchy–Green tensors are defined by

Ce = Ue2 = Fe⊤Fe,

Be = Ve2 = FeFe⊤,

}

(2.18)

and the right and left plastic Cauchy–Green tensors tensors by

Cp = Up2 = Fp⊤Fp,

Bp = Vp2 = FpFp⊤.

}

(2.19)

Differentiating (2.18)1 results in the following expression for the rate of change of Ce:

Ċe =
(
Fe⊤Ḟe + Ḟe⊤Fe

)

= Fe⊤
(
ḞeFe−1 + Fe−⊤Ḟe⊤

)
Fe

= 2Fe⊤DeFe. (2.20)

Hence
De = 1

2F
e−⊤ĊeFe−1. (2.21)

Consequences of (P2) on page 2, (2.15)1, and (2.18) are that:

5The stretch tensors are therefore symmetric, positive-definite.
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(P5) Ue and Ce are structural tensor fields;

(P6) Re maps structural vectors to spatial vectors.

2.1 Basic laws

Momentum balances. Free energy imbalance

We assume that the underlying frame is inertial and begin with the local momentum balances

ρv̇ = divT + b0,

T = T⊤,

}

(2.22)

in terms of the Cauchy stress T. Also, we take as our basic thermodynamical law the free-energy

imbalance under isothermal condition:

ρ ψ̇ − T :  L ≤ 0 (2.23)

with ψ the free-energy measured per unit mass of the body, and ρ the mass density in the deformed body.
In what follows it is helpful to express the free-energy imbalance (2.23) in terms of the free energy

and the stress-power measured per unit volume of the intermediate space. Thus, with ρI the mass density
in the intermediate space, let

ψI

def
= ρIψ (2.24)

denote the free energy measured per unit volume of the intermediate space. For a plastically incompress-
ible material the mass density ρI is related to the mass densities ρR and ρ in the reference and deformed
bodies by

ρR = ρI, ρI = ρJe, (2.25)

respectively. Thus, from (2.25)1,
ρ̇I = 0, (2.26)

and hence
ρI ψ̇ = ψ̇I. (2.27)

Next, dividing (2.23) through by ρ, multiplying the resulting expression by ρI, and using (2.25)2, we
obtain

ρIψ̇ − Je T :  L ≤ 0.

Finally, using (2.27) we obtain
δI = −ψ̇I + Je T :  L ≥ 0, (2.28)

where δI is the dissipation rate per unit volume of the intermediate space.
Consider next the expression Je T :  L for the stress power per unit volume of the intermediate space.

Using (2.8) and the symmetry of T we obtain6

Je T :  L = Je T : De

︸ ︷︷ ︸

elastic term

+Je (Fe⊤TFe−⊤) : Lp

︸ ︷︷ ︸

plastic term

. (2.29)

Based on our treatment of elastic solids we seek to express the “elastic term” Je T : De in terms of Ċe.
Using (2.21)

Je T : De = 1
2J

eT : (Fe−⊤CeFe−1),

= 1
2

(

JeFe−1TFe−⊤) : Ċe. (2.30)

6We make frequent use of the identity

A : (BC) = (B⊤
A) :C = (AC

⊤) :B.
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Let
Te def

= JeFe−1TFe−⊤. (2.31)

This symmetric stress-measure is an analog of the second Piola stress with respect to the intermediate
or structural space; that is, Te is the second Piola stress computed using Fe in place of F. Using (2.31)
we may express (2.30) as

Je T : De = 1
2T

e : Ċe. (2.32)

We turn our attention next to the “plastic term” in (2.29):

Je (Fe⊤TFe−⊤) : Lp = (Fe⊤Fe

︸ ︷︷ ︸

Ce

Je Fe−1TFe−⊤

︸ ︷︷ ︸

Te

) : Lp

= (CeTe) : Lp.

Central to the theory is the Mandel stress defined by

Me def
= CeTe. (2.33)

Using (2.33) in the expression above we obtain

Je (Fe⊤TFe−⊤) : Lp = Me : Lp. (2.34)

Substituting (2.32) and (2.34) into (2.29), we find the following expression for the stress power :

JeT :  L = 1
2 Te : Ċe

︸ ︷︷ ︸

elastic term

+ Me : Lp

︸ ︷︷ ︸

plastic term

. (2.35)

Finally, using (2.35) we can write the free-energy balance (2.28) in a form suitable to a discussion of
plasticity:

δI = −ψ̇I + 1
2T

e : Ċe + Me
0 : Lp ≥ 0, (2.36)

where in writing the plastic power term we have used the fact that trLp = 0.
For future use, we list together the relations (2.31) and (2.33) for Te and Me:

Te = JeFe−1TFe−⊤ and Me = CeTe. (2.37)

Note that (2.37)1 may be inverted to give an expression for T as a function of Te:

T = J−1FeTeFe⊤. (2.38)

Further,

T = Je−1FeCe−1MeFe⊤ by (2.38), (2.33)

= Je−1FeFe−1Fe−⊤MeFe⊤ by (2.18)

= Je−1FeMe⊤Fe−1 since T is symmetric;

the Cauchy and Mandel stresses are therefore related by

T = Je−1FeMe⊤Fe−1. (2.39)

Our next step is to determine the mapping properties of Te, and Me. As is clear from (2.31), the
input space for Te is the same as that for Fe−⊤, which, by (P2) on page 2, is the structural space.
Similarly, the output space for Te is the same as that for Fe−1, which is again the structural space.
Thus Te maps structural vectors to structural vectors. Further, by (P5) on page 5, Ce also has this
mapping property, and we therefore may conclude from (2.37)2 that Me also map structural vectors to
structural vectors. Thus:

(P7) Te and Me are structural tensor fields.
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2.2 Frame-indifference

Recall that a change of frame at each fixed time t, defined by a rotation Q(t) and a vector y(t) and
transforms spatial points x to spatial points

x∗ = y(t) + Q(t)(x − o). (2.40)

As discussed earlier, a change of frame is, at each time, a rotation and translation of the observed space
(the space through which the body moves); it does not affect the reference space, nor does it affect the
structural space; thus

(‡) material vectors and structural vectors are invariant under changes in frame,

an assertion that should be at least intuitively clear from Figure 1.
Since observers view only the deformed body, tensor fields that map material vectors to material

vectors are invariant under changes in frame. In view of (‡), the exact same argument yields the
following result:

(†) tensor fields

(a) that map material vectors to material vectors, or

(b) that map material vectors to structural vectors, or

(c) that map structural vectors to material vectors, or

(d) that map structural vectors to structural vectors,

are invariant under changes in frame.

Next, recall the transformation law for the deformation gradient F under a change in frame:

F∗ = QF. (2.41)

By (2.1) and (2.41),
(FeFp)∗ = Q(FeFp).

On the other hand, by (P2) and (b) of (†), (Fp)∗ = Fp, so that

(FeFp)∗ = (Fe)∗(Fp)∗

= (Fe)∗Fp;

hence
QFeFp = (Fe)∗Fp.

Thus7

(Fe)∗ = QFe, and Fp is invariant. (2.42)

Similarly, appealing to (P4) and (b) of (†),

Lp is invariant. (2.43)

Next, by (2.15) and (2.42),

(Fe)∗ = (Re)∗(Ue)∗ = QFe = QReUe,

(Fe)∗ = (Ve)∗(Re)∗ = QFe = QVeQ⊤ QRe,

and we may conclude from the uniqueness of the polar decomposition that (Re)∗ = QRe and

Ue is invariant, (Ve)∗ = QVeQ⊤, (2.44)

7Silahavy (1977).
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so that, by (2.18),
Ce is invariant, (Be)∗ = QBeQ⊤. (2.45)

We next establish transformation rules for stresses Te and Me expressed, via (2.37), as functions of
the Cauchy stress T, which is frame-indifferent. By (2.37)1 and (2.41),

(Te)∗ = Je [(Fe)∗]−1T∗[(Fe)∗]−⊤

= Je [QFe]−1QTQ⊤[(QFe)]−⊤

= Je [Fe−1Q⊤QTQ⊤QFe−⊤

= Je Fe−1TFe−⊤

= Te. (2.46)

Finally, (2.33), (2.45), and (2.46) imply that (Me)∗ = Me. Thus

Te, and Me are invariant. (2.47)

3 Constitutive theory

We neglect defect energy and restrict attention to constitutive relations that separate elastic and plastic
constitutive response. Therefore, guided by (2.36), we consider elastic constitutive relations of the form

ψI = ψ̄I(C
e, ϑ) with ψ̄I(1, ϑ) = 0,

Te = T̄e(Ce, ϑ).






(3.1)

Recall, that we are focussing on an isothermal theory, and hence the temperature ϑ is constant of
the theory. For the plastic constitutive equations we introduce a list of n scalar internal variables
~S = (S1, S2, . . . , Sn), and assume that

Lp = L̄p(Me, ~S, ϑ), with tr L̄p(Me, ~S, ϑ) = 0 and L̄p(0, ~S, ϑ) = 0

Ṡi = Hi(L
p, ~S, ϑ).






(3.2)

Note that by (2.43) and (2.45)1, Ce and Lp are invariant under changes in frame, and by (2.47) so also

are Te and Me. Thus, since ~S — being a scalar fields — are frame-indifferent, the constitutive equations
(3.1) and (3.2) are frame-indifferent.

Under isothermal conditions,

ψ̇I =
∂ψ̄I(C

e, ϑ)

∂Ce
: Ċe, (3.3)

and hence satisfaction of the free-energy imbalance (2.36) requires that

[

1
2 T̄

e(Ce, ϑ) − ∂ψ̄I(C
e, ϑ)

∂Ce

]

: Ċe + Me
0 : L̄p(Me, ~S, ϑ) ≥ 0, (3.4)

hold in all motions of the body. Thus, sufficient conditions that the constitutive equations satisfy the
free-energy imbalance are that

(i) the free energy determine the stress through the stress relation

T̄e(Ce, ϑ) = 2
∂ψ̄I(C

e, ϑ)

∂Ce
; (3.5)
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(ii) the plastic distortion-rate Lp satisfy the reduced dissipation inequality

Me
0 : L̄p(Me, ~S, ϑ) ≥ 0 (3.6)

for all Me and all ~S.

We assume henceforth that (3.5) holds in all motions of the body, and that the material is strictly

dissipative in the sense that

Me
0 : L̄p(Me, ~S, ϑ) > 0 whenever Lp 6= 0. (3.7)

4 Isotropy

Consistent with Figure 1, (P2) on page 2, a standard discussion of material symmetry for elastic solids
may be applied to the constitutive equations (3.1) and (3.2) provided the roles of the intermediate space
and the elastic distortion Fe in the present discussion play the roles of the reference space and the
deformation gradient F in standard discussions of symmetry considerations for elastic solids.8

The following definitions help to make precise our notion of an isotropic material:

(i) Orth+ = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group GI at each time t, is the group of all rotations of the intermediate structural
space that leaves the response of the material unaltered.

Let Q, a time-independent rotation of the intermediate space, be a symmetry transformation. Then
F is unaltered by such a rotation, and hence9

Fe → FeQ and Fp → Q⊤Fp, (4.1)

and also
Ce → Q⊤CeQ, Ċe → Q⊤ĊeQ, Lp → Q⊤LpQ. (4.2)

To deduce the transformation laws for Te and Me under a symmetry transformation,

• we require invariance of the internal power (2.35) under a symmetry transformation; i.e., we
require that

Te : Ċe and Me : Lp be invariant (4.3)

under a symmetry transformation Q. Then (4.2) and (4.3) yield the transformation laws

Te → Q⊤TeQ, Me → Q⊤MeQ. (4.4)

Thus we conclude that
ψ̄I(C

e, ϑ) = ψ̄I(Q
⊤CeQ, ϑ),

Q⊤T̄e(Ce, ϑ)Q = T̄e(Q⊤CeQ, ϑ),

Q⊤L̄p(Me, ~S, ϑ)Q = L̄p(Q⊤MeQ, ~S, ϑ),

Hi(L
p, ~S, ϑ) = Hi(Q

⊤LpQ, ~S, ϑ),







(4.5)

must hold for all rotations Q in the symmetry group GI at each time t.
We refer to the material as isotropic (and to the intermediate space as undistorted) if at each time t

GI = Orth+, (4.6)

so that the response of the material is invariant under arbitrary rotations of the intermediate space. We
henceforth restrict attention to materials that are isotropic. In this case, the response functions ψ̄I, T̄e,
L̄p, and Hi must each be isotropic.

8Within the framework of the Kröner–Lee decomposition the structural space (rather than the reference space) represents
the seat of material structure; cf. Figure 1.

9Hahn (1974), Anand (1980).
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4.1 Consequences of isotropy of the elastic response

Since ψ̄I(C
e, ϑ) is an isotropic function of Ce, it has the representation

ψI = ψ̃I(ICe , ϑ), (4.7)

where
ICe =

(

I1(Ce), I2(Ce), I3(Ce), ϑ
)

is the list of principal invariants of Ce. Let

(λe
1, λ

e
2, λ

e
3)

denote the positive eigenvalues of Ue. Then the principal invariants of Ce may be expressed as

I1(Ce) = λe 2
1 + λe 2

2 + λe 2
3 ,

I2(Ce) = λe 2
1 λe 2

2 + λe 2
2 λe 2

3 + λe 2
3 λe 2

1 ,

I3(Ce) = λe 2
1 λe 2

2 λe 2
3 .







(4.8)

In writing (4.8) it is tacit that the list (λe
1, λ

e
2, λ

e
3) of principal stretches is presumed to have each stretch

repeated a number of times equal to its multiplicity as an eigenvalue of Ue. Using (4.8) in (4.7), to
express the free energy in terms of the principal stretches, we obtain:

ψI = ψ̃I(ICe , ϑ)

= ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ). (4.9)

Since the expressions (4.8) for I1(Ce), I2(Ce), and I3(Ce) in terms of λe
1, λe

2, and λe
3 are invariant under

permutations of the integers (1, 2, 3) labelling the principal stretches, so also is ψ̆I(λ
e
1, λ

e
2, λ

e
3); i.e.,

ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ) = ψ̆I(λ

e
1, λ

e
3, λ

e
2, ϑ) and so forth.

Next, let
ωe

i = λe 2
i , i = 1, 2, 3. (4.10)

Then, by the chain-rule and (3.5), the stress Te is given by

Te = 2
∂ψ̆I(λ

e
1, λ

e
2, λ

e
3, ϑ)

∂Ce

= 2

3∑

i=1

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

∂λe
i

∂Ce

=

3∑

i=1

1

λe
i

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

∂ωi

∂Ce
. (4.11)

The spectral representation of Ce is

Ce =

3∑

i=1

ωe
i r

e
i ⊗ re

i , ωe
i = λe 2

i , (4.12)

where (re
1, r

e
2, r

e
2) are the orthonormal eigenvectors of Ce (and Ue). Assume that the squared principal

stretches ωe
i are distinct, so that the ωe

i and the principal directions re
i may be considered as functions

of Ce. Then,
∂ωe

i

∂Ce
= re

i ⊗ re
i , (4.13)
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and, granted this, (4.13) and (4.11) imply that

Te =

3∑

i=1

1

λe
i

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

re
i ⊗ re

i . (4.14)

Next, since

Fe =

3∑

i=1

λe
i lei ⊗ re

i (4.15)

where
lei = Re re

i ,

are the eigenvectors of Ve (or Be), use of (2.38) and (4.14) gives

T = Je−1
( 3∑

i=1

λe
i lei ⊗ re

i

)( 3∑

i=1

1

λe
i

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3)

∂λe
i

re
i ⊗ re

i

)( 3∑

i=1

λe
i re

i ⊗ lei

)

,

or

T = Je−1
3∑

i=1

λe
i

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

lei ⊗ lei . (4.16)

Also, use of (4.12) and (4.14) in (2.37)2 gives

Me =

3∑

i=1

λe
i

∂ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ)

∂λe
i

re
i ⊗ re

i . (4.17)

Further, (4.16) and (4.17) yield the important relation

Me = Je Re⊤TRe, (4.18)

and hence that

• the Mandel stress Me for isotropic materials is symmetric.

4.1.1 Specialization of the elastic energy

Let,

Ee
i

def
= lnλe

i (4.19)

define principal elastic logarithmic strains, and consider a free energy function of the form

ψ̆I(λ
e
1, λ

e
2, λ

e
3, ϑ) = ψ̂I(E

e
1 , E

e
2 , E

e
3), (4.20)

so that, using (4.17)

Me =
3∑

i=1

∂ψ̂I(E
e
1 , E

e
2 , E

e
3)

∂Ee
i

re
i ⊗ re

i . (4.21)

In metallic materials the elastic strains are in general “small.” Accordingly, we consider the following
simple generalization of the classical strain energy function of infinitesimal isotropic elasticity which uses
a logarithmic measure of finite strain, and is a useful free energy function for moderatley large elastic
stretches,10

ψ̂I(E
e
1 , E

e
2 , E

e
3 , ϑ) = G

[
(Ee

1)2 + (Ee
2)2 + (Ee

3)2
]

+ 1
2 (K − 2

3G) (Ee
1 + Ee

2 + Ee
3)

2
, (4.22)

where the parameters
G(ϑ) > 0, and K(ϑ) > 0 (4.23)

10Anand (1979, 1986)
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are the shear modulus, and bulk modulus, respectively. Then, (4.21) gives

Me =

3∑

i=1

(

2GEe
i + (K − 2

3
G) (Ee

1 + Ee
2 + Ee

3)
)

re
i ⊗ re

i . (4.24)

Let

Ee def
=

3∑

i=1

Ee
i re

i ⊗ re
i , (4.25)

denote the logarithmic elastic strain tensor in the intermediate space. Then, (4.24) for the Mandel stress
may be written as the simple relation

Me = 2GEe
0 +K (trEe) 1. (4.26)

4.2 Consequences of isotropy of the plastic response

Let
L̄p(Me, ~S, ϑ) = D̄p(Me, ~S, ϑ) + W̄p(Me, ~S, ϑ), (4.27)

so that
Dp = D̄p(Me, ~S, ϑ),

Wp = W̄p(Me, ~S, ϑ).






(4.28)

Then, on account of (4.5)3, for an isotropic material

Q⊤D̄p(Me, ~S, ϑ)Q = D̄p(Q⊤MeQ, ~S, ϑ),

Q⊤W̄p(Me, ~S, ϑ)Q = W̄p(Q⊤MeQ, ~S, ϑ),






(4.29)

must hold for all Q. That is D̄p and W̄p are isotropic functions of the symmetric stress Me, ~S and ϑ.
An immediate consequence of the isotropy of W̄p, the symmetry of Me, and a standard representation
theorem for skew tensors11 is that

• for isotropic materials the plastic spin vanishes,12

Wp = 0 . (4.30)

Hence the plastic constitutive equations reduce to

Dp = D̄p(Me, ~S, ϑ), with trD̄p(Me, ~S, ϑ) = 0 and D̄p(0, ~S, ϑ) = 0,

Ṡi = Hi(D
p, ~S, ϑ),






(4.31)

with D̄p and Hi isotropic functions. Further, by (2.7)2,

Ḟp = Dp Fp, (4.32)

with Dp given by (4.31)1.
Also, on account of (4.30),13 the dissipation inequality (3.7) reduces to

δI = Me
0 : D̄p(Me, ~S, ϑ) > 0 whenever Dp 6= 0. (4.33)

11Wang (1970).
12Anand (1980).
13And also because of the symmetry of Me.
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4.2.1 Maximum resolved stress and other hypothesis

Let
dp def

= |Dp|, (4.34)

denote a scalar flow rate, so that the plastic flow direction is given by

Np =
Dp

dp
. (4.35)

Then, the dissipation inequality (4.33) may be written as

δI = τ dp > 0 whenever dp > 0, (4.36)

where
τ

def
= Me

0 : Np > 0 (4.37)

is a positive-valued resolved stress during plastic flow (dp > 0).

Consider a given time t at which the Mandel stress Me, hardening variables ~S and the temperature ϑ
are known, and fixed. In order to determine the direction of plastic flow Np at this fixed state (Me, ~S, ϑ),
we make the physical assumption that for isotropic materials

• plastic flow occurs in a direction Np which maximizes the resolved stress τ .14

To establish the consequence of this hypothesis, note that the Schwarz inequality with |Np| = 1
requires that

τ = Me
0 : Np ≤ |Me

0||Np| = |Me
0|, (4.38)

so that
τmax = |Me

0|. (4.39)

Thus using (4.37) and (4.39) we see that the hypothesis that plastic flow occurs in a direction Np which
maximizes the resolved stress τ leads to the important result that

• the direction of plastic flow Np must coincide with the direction of the deviatoric stress Me
0:

Np =
Me

0

|Me
0|
. (4.40)

We assume henceforth that (4.40), that is the co-directionality of Np and Me
0, holds.15

4.2.2 Equivalent shear stress; equivalent plastic shear strain rate; equivalent plastic shear

strain

We call the scalar stress measure defined by

τ̄
def
=

√

1/2 |Me
0|, (4.42)

the equivalent shear stress. 16 Correspondingly, an equivalent plastic shear strain rate is defined
by √

2 |Dp|;
14Note that the maximum resolved stress hypothesis is equivalent to a maximum dissipation hypothesis.
15Recall that the constitutive equation for the extra stress as a function of the stretching in an incompressible Newtonian

fluid has the simple form S = 2µD and hence trivially satisfies

S

|S| =
D

|D| . (4.41)

Equation (4.40) is the counterpart of this relation for an isotropic elastic-viscoplastic solid.
16Traditionally the equivalent shear stress is defined in terms of the Cauchy stress as

τ̄
def
=

p

1/2 |T0|,
and is so-named because when T12 is the only non-zero component of the Cauchy stress in shear with respect to a rectangular
Cartesian coordinate system with base vectors {e1, e2, e3},

τ̄ ≡ |T12|.
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for economy of notation we replace our original definition dp = |Dp| by

dp def
=

√
2 |Dp|, (4.43)

where dp now denotes the equivalent plastic shear strain rate.17 The quantity

γ̄p(t)
def
=

∫ t

0

dp(ζ) dζ, (4.44)

defined in terms of the equivalent plastic shear strain rate dp, is called the equivalent plastic shear

strain and is often used as a scalar measure of the “amount of plastic strain” at time t.
In terms of the equivalent shear stress τ̄ and the equivalent plastic shear strain rate dp, the dissipation

inequality may be written as

δI = τ̄ dp > 0 whenever dp > 0. (4.45)

4.2.3 Hypothesis of no flow whenever the equivalent shear stress vanishes

Next, on account of the isotropy of the constitutive equation for the plastic stretching, the equivalent
plastic shear strain rate is given by

dp = d̂p(IMe , ~S, ϑ) ≥ 0, (4.46)

where
IMe = (τ̄ , p̄,det Me

0) (4.47)

is a a list of the invariants of Me, with

p̄
def
= −1

3
trMe, and det Me

0(≡ 1

3
tr(Me

0
3)). (4.48)

The invariant p̄ is called the a mean normal pressure.18

Motivated by the dissipation inequality (4.45) we make the physical hypothesis that

17This terminology arises from the fact that in shear, when the components of Dp with respect to a rectangular Cartesian
system are

Dp
12

= Dp
21

6= 0, and all other Dp

ij
= 0,

the equivalent plastic shear strain rate is
dp ≡ 2 |Dp

12
|.

18Two normalized invariants often used to describe the effects of the mean normal pressure p̄ and the third invariant
detMe

0
relative to the equivalent shear stress are:

(i) The stress-triaxiality parameter,

X
def
=

−
√

3p̄

τ̄
. (4.49)

(ii) The Lode-angle or deviatoric polar angle Θ defined by

cos(3Θ)
def
=

3
√

3

2

detMe
0

τ̄3
, with 0 ≤ Θ ≤ π

3
. (4.50)

Writing

ξ
def
= cos(3Θ), (4.51)

and expressing detMe
0

in terms of the principal values {σ1, σ2, σ3} of the Mandel stress Me and the mean normal
pressure p̄, we note that

ξ =
3
√

3

2

(σ1 + p̄)(σ2 + p̄)(σ3 + p̄)

τ̄3
with − 1 ≤ ξ ≤ 1. (4.52)

Note that when σ1 is the only nonzero component of stress, ξ = 1 if σ1 > 0 (simple tension), while ξ = −1 if σ1 < 0
(simple compression). Also, if any (σi + p̄) = 0, then ξ = 0; such a stress-state gives rise to one of the normal
components of the plastic stretching to be zero, and is accordingly called a state of plane plastic strain.
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• no matter what the values of the invariants p̄ and det Me
0, the equivalent plastic shear strain rate

vanishes whenever the equivalent shear stress vanishes:

dp = 0 if τ̄ = 0. (4.53)

That is
dp = d̂p(τ̄ , p̄,det Me

0, ~S, ϑ) ≥ 0, with d̂p(0, p̄,det Me
0, ~S, ϑ) = 0 . (4.54)

4.2.4 Strong isotropy hypothesis

For an isotropic viscoplastic material we require in addition that

• the functionsHi(d
p,Np, ~S, ϑ) characterizing the evolution equations for the scalar internal variables

be independent of the flow direction Np, an assumption we refer to as the strong isotropy

hypothesis.

4.2.5 Generalized Lévy–Mises–Reuss flow rule. Evolution equations for internal variables

In view of the hypotheses above, the constitutive equation for the plastic stretching takes the form:

Dp =
√

1/2dp Np,

Np =
√

1/2(Me
0/τ̄),

dp = d̂p(τ̄ , p̄,det Me
0, ~S, ϑ) ≥ 0 with d̂p(0, p̄,det Me

0, ~S, ϑ) = 0,







(4.55)

while the evolution equations for the internal variables become

Ṡi = Hi(d
p, ~S, ϑ). (4.56)

We refer to (4.55) as a generalized Lévy–Mises–Reuss flow rule.19

4.2.6 Specialization of the scalar flow rate dp equation

For metallic materials a dependence on the stress invariants p̄ and detMe
0 has been experimentally found

to be small. Accordingly, we neglect such a dependency here, and assume that the equivalent plastic
shear strain rate is directly given by a flow function

dp = F(τ̄ , ϑ, ~S) ≥ 0 with F(0, ϑ, ~S) = 0. (4.57)

Alternatively, in many existing theories one assumes the existence of a flow strength function

S(~S, dp, ϑ) > 0 whenever dp > 0, (4.58)

such that the equivalent shear stress satisfies the flow condition

τ̄ − S(~S, dp, ϑ) = 0 whenever τ̄ > 0. (4.59)

In this case (4.59) serves as an implicit function to determine dp at a fixed state
{

τ̄ , ϑ, ~S
}

.

4.2.7 Specialization of the evolution equations for the internal variables

We assume that at sufficiently high temperatures the internal variables may evolve not only when dp 6= 0,
but also when dp = 0, and accordingly rewrite (4.56) as

Ṡi = Hi(~S, d
p, ϑ)dp

︸ ︷︷ ︸

dynamic evolution

− ri(~S, ϑ)
︸ ︷︷ ︸

static recovery

, (4.60)

In (4.60) Hi represent strain-hardening/softening function for the internal variables Si during plastic
flow, dp > 0. The function ri ≥ 0 represent static thermal recovery functions for the internal variable Si

at a given temperature, whenever there is no macroscopic flow, dp = 0.

19The classical Lévy–Mises–Reuss flow rule is a flow rule of this form for small deformations of rate-independent materials.
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5 Final constitutive equations for a finite deformation rate-

dependent theory for isotropic elastic-plastic materials with

isotropic strain-hardening under isothermal conditions

1. Kinematical decomposition of F: the Kröner–Lee decomposition

F = FeFp, with detFp = 1, (5.1)

in which F is the deformation gradient, while Fe and Fp are the elastic and plastic distortions.

2. Free energy:

With Fe = ReUe the polar decomposition of Fe, {λe
i} the positive eigenvalues and {re

i} the
orthonormal eigenvectors of Ue, and

Ee def
=

3∑

i=1

(lnλe
i ) re

i ⊗ re
i , (5.2)

the logarithmic elastic strain tensor in the intermediate space,

ψ = G|Ee
0|2 + 1

2K|trEe|2, (5.3)

where G(ϑ) > 0 and K(ϑ) > 0 are the elastic shear and bulk moduli, respectively.

3. Equation for the stress

The driving stress for plastic flow is the Mandel stress given by

Me = C[Ee] = 2GEe
0 +K(trEe)1, (5.4)

where
C

def
= 2G (I − 1

31 ⊗ 1) +K 1 ⊗ 1 (5.5)

is the fourth-order isotropic elasticity tensor, with I the fourth-order identity tensor which maps
symmetric tensors A into themselves A = I[A].

In terms of Me,

τ̄
def
=

√

1/2 |Me
0| (5.6)

defines an equivalent shear stress.

The Cauchy stress in the deformed body is given by

T = Je−1Re MeRe⊤, Je = det Fe(≡ det F). (5.7)

4. The flow rule:
Ḟp = DpFp,

Dp =
√

1/2dp Np,

Np =
√

1/2(Me
0/τ̄),







(5.8)

with the equivalent plastic shear strain rate either given directly by a flow function

dp = F(τ̄ , ϑ, ~S) ≥ 0 with F(0, ϑ, ~S) = 0, (5.9)

or alternatively, as a solution to an implicit flow equation

τ̄ − S(~S, dp, ϑ) = 0 whenever τ̄ > 0, (5.10)

where
S(~S, dp, ϑ) > 0 (5.11)

is a strain rate and temperature-dependent flow strength of the material.
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5. The evolution equations for the internal variables:

Ṡi = Hi(~S, d
p, ϑ)dp

︸ ︷︷ ︸

dynamic evolution

− ri(~S, ϑ)
︸ ︷︷ ︸

static recovery

, (5.12)

for the internal variables ~S = {Si | i = 1, n} of the theory.

The evolution equations for Fp and ~S need be accompanied by initial conditions. Typical initial
conditions presume that the body is initially (at time t = 0, say) in a virgin state in the sense that

F(X, 0) = Fp(X, 0) = 1, Si(X, 0) = Si,0 (= constant). (5.13)
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