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Outline

Tresca vs. Mises yield criteria

Continuum Plasticity

— Kinematics (3D, 1D large and small)
— Constitutive theory

— Specialization to a Bingham material

2D vs. 3D
1D implementation



Tresca vs. Mises

e Mises: Maximum distortional energy
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1D small-deformation elastic-viscoplastic

Elastic-plastic decomposition of ¢
e = €%+ €P,
é = €€ + €P,
Elastic stress-strain relation
o= FEe® = FE (e —€P).
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Flow rule: Let

nP =" _
|€P|

denote the plastic flow direction, and
P =& >0,

the equivalent tensile plastic strain rate. We assume
that plastic flow occurs in the direction of the stress:

nP = sign(o).
Hence,
¢ =enP, where nP =sign(c) and € >0.
Equivalent plastic tensile strain rate €

& = f(le]) >0 with € =0 when |o| =0.



3D small-deformation elastic-viscoplastic
Kinematics: e€=¢€®+ €, with treP =0,

Equation for stress:

2
o =2Ge®*+ (K — EG)(tree)la o def \J§|‘70|,

Flow rule:
_ 3.0 . F |12,
Gp — _EpTO’ Ep é leepla
o 3
Equivalent plastic tensile strain rate e?

e = f(¢) with € =0 when o =0.



Large-deformation kinematics

e Deformation
Gradient

04
F{j —_— 6_.Xj

* Velocity

Gradient
L = gradv = FF~!
L=D+W

F = Vy(X,1)
x=x(X,)

Undeformed
configuration

Ko( D)

u(X+dX) = u(X)+du




Kinematical decomposition: Motivation

 Irreversible part of deformation:

We assume that irreversible flow is due to the
flow of “defects” through the material structure

 Reversible part of the deformation:

We assume that reversible deformation is
accommodated by stretch and rotation of the
structure



Kinematical decompositions

o Small Strain elastic-plastic
e=€e"+€e € =Efj+5fj

e Large Strain elastic-plastic

* In most typical cases, we assume
plastic flow Is iIncompressible

tre? =0, detFP =1



Kinematics

e Polar
decomposition

F=RU=VR

e Spectral
decomposition

3
F=) Mi®r

i=1
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Basic Laws

e Cauchy stress, T, o

e Conservation of linear momentum
divIl 4+ b = pu

e Conservation of angular momentum
T=TT
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3D large-deformation elastic-viscoplastic
Kinematics: F = F¢FP, with detFP =1,
Mandel stress (driving stress for plastic flow):
_ def

M€ = 2GE® + (K — gG)(trEe)l, 5= \E|M8|.

Cauchy stress: T = J* 1R®M®R€¢", J¢=detF®.
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3D large-deformation elastic-viscoplastic
Flow rule:
FP = DPFP, DP= ggp— e = ,|=|D?|.
Equivalent plastic tensile strain rate &
e? = f(g) with € =0 when o =0.
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Flow rule
Equivalent tensile plastic strain rate &€ needs an

constitutive equation. A simple power-law func-

tion:

?

s _ éo(i)(l/m)

S
where ¢ d§f|c:r|. The inverted form of power-law:

=P\ M —F |
7 = S(f—) . U /
° _J
For m = 1, we have Newtonian viscosity: e

_ (Ep) def S ©
€0 €0 €
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Flow rule

Introduce a rate-independent initial-vield

in power-law function with oe d=ef5 — Oy

0 if 00<0,

kéo(%)(l/m) if oe> 0.

e =

- .

For the case m = 1, we have Bingham Model.

’

0 if oge <0,

=<téo(%) if oe > 0.

e
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Rheological Models

Newtonian Model
A

Shear
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Bingham Plastic Model

A
Shear
stress
T
-

Shear rate v

Power Law Model

Shear
siress

>
Shear rate y

Herschel-Bulkley Model
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1D large-deformation elastic-viscoplastic

U >0, stretch (I/1p),

U = U°CU?P elastic-plastic decomposition of U,
Ue elastic part of the stretch,

UP, plastic part of the stretch,

o, Cauchy stress.

Strain: ¢ =InU¢,
e 1 e\2
Free energy: ¢°= 5E(e )<,
Cauchy stress: o = FE €,

Flowrule : UP = DPUP, DP = ¢€"sign(o).
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2D vs. 3D

e General 3D model can be specialized
— Plane-strain

Fi1 Fia 0
Fg1 Fya O
0 0 1

— Plane-stress

Ty T2 O
Toy T3 O
0 0 O
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