
1

1

A Theory of the Linear Viscoelastic Properties 
of Dilute Solutions of Coiling Polymers

Prince E. Rouse, Jr.
J. Chem. Phys., 20 (7) 1953
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“I found this paper very impressive, but failed to 
understand it fully on first reading”

Dr. Bruno H. Zimm, April 20, 1978
Citation Classic, in CC/Number 27 ; July 2, 1979

“…I wrote to Rouse about this, and he quickly 
straightened out my error”
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1941, Ph.D. Univ. of Illinois, Association of Benzoic Acid in Solution

1947, J. Am. Chem. Soc., Diffusion of Vapors in Films

1953, J. Chem. Phys., Theory of LVE of Dilute Solns (Franklin Inst.)

1962, Appl. Spec., Measurement of Spectrograms (Los Alamos Lab)

1966, Society of Rheology Bingham Medal Recipient 
(between E. Guth and H. Markovitz, and 6 years after B. Zimm)

1973,1975, J. Quant. Spec. Rad. Txfr., Oscillatory-strengths from line absorption  

in a high-temperature furnace

1976, J. Chem. Eng. Data, Detonation Properties of Explosives

1998, J. Chem. Phys., Theory of LVE of Dilute Solns, Part II 
some modifications to original theory to make it more complete
(contact information was a street address in Santa Fe, New Mexico)

Prince Earl Rouse, Jr. 1917-?

A timeline gathered from an 
assortment of publications
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Big Picture: Kinetic Theory Models

• Current Topic: 
Polymers in Dilute Solution

– In contrast to dilute particles
– In contrast to a polymer melt

• The focus of Rouse’s paper is 
on linear polymers, dilutely
suspended in a Newtonian 
background solvent

• The model for the restoring-
force law comes from 
considerations of entropic 
elasticity, which is motivated by 
the bead-rod model

Handout for MIT course 10.531, 
Macromolecular Hydrodynamics, 
Prof. Gareth H. McKinley



3

5

Overview of Rouse Model

• Physical model
– Polymer broken into submolecules

• Each submolecule is a chain with Gaussian end-to-end 
distribution, a.k.a. Gaussian chain

• “beads” and “springs” picture not introduced by 
Rouse, but common in texts such as DPL vol. 2 to 
explain Rouse’s model

– Motion:
• Advection by flow of “atoms” at ends of submolecules
• Diffusion by Brownian motion, driven by minimization 

of free energy and inhibited by viscous drag
– Forces:

• Linear restoring force from entropic springs
• Linear viscous drag of submolecule
• Brownian force not discussed explicitly by Rouse, but 

captured by distribution functions

• Result
– Predicts generalized Maxwell model, with specified 

distribution of relaxation times
– Results given for linear viscoelastic tests

• Small amplitude oscillatory shear (SAOS)
• Zero-shear viscosity

Bird, Curtiss, Armstrong, and 
Hassager, Dynamics of Polymeric 
LIquids, vol. 2

( )

2

2

2 2
1

2 2 2

24 sin
2 1

6

p

p

pBkT
N

N
BkTp p

στ
π

σ ττ
π

=
 
 + 

≅ =

Eq (33); approximation strictly applies 
only to longest 20% of relaxation times
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1. Motion of Liquid

1 1 ~ decay length
m
 
 Γ  

Definition of velocity gradient

Taylor Series Expansion of Eq (1)

Solution to flow problem

Conclusion: entire polymer experiences 
constant velocity gradient for 
sufficiently low frequencies

Conclusion: entire polymer experiences 
constant velocity gradient for 
sufficiently low frequencies
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2. Model of Polymer Molecule

• Equilibrium distribution of end-to-end vectors: 
all are assumed to be Gaussian

– End-to-End equilibrium distribution of full polymer

– End-to-End distribution of submolecule
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2. Model of Polymer Molecule

Probability that 
molecular configuration lies within dφi

Definition of (xj, yj, zj),

Vector location of end of submolecule j

Definition of dφi,

differential volume surrounding 
each i-configuration
(x1, y1, z1), (x2, y2, z2), … , (xN, yN, zN) 

• Equilibrium distribution of molecular configurations: 
Gaussian at equilibrium, but modified when polymer is stretched
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• Velocity gradient causes two types of polymer motion
– (1) Atoms at junctions advect with velocity identical to surrounding liquid

NOTE: polymers do not affect solvent flow field, 
i.e. “free-draining limit” with no “hydrodynamic interactions”

– (2) Coordinated Brownian motions of segments to drift toward their equilibrium 
distribution

• Model supported by observation that viscous losses tend to zero at high 
frequencies

• (1) Advection

3. Motion of Polymer Molecules

Rate of change of x-
component of position 
vector (xj) caused directly by 
gradient 

Note rate of change of yj
and zj components are zero
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3. Motion of Polymer Molecules

• (2) Coordinated Brownian motion: “the central part of the theory”

– When distribution of molecular configurations is perturbed it changes the 
thermodynamic potentials of the molecules

– Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

Wall’s equation: change in entropy of 
a volume V

Definition: Average number of 
molecules whose points lie in 

dφi at equilibrium

Definition: Similar to ni, but 
it’s the average number in dφi

when exposed to velocity 
gradient α
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3. Motion of Polymer Molecules

Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

Change in Helmholtz free 
energy

Thermodynamic potential: 
caused by entrance of 
molecule into dφi

Assume small variation of si
from equilibrium ni

Rewrite energy in terms of 
velocity gradient
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3. Motion of Polymer Molecules

Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

( ) 1j j
x

−( ) 1
.restoring-force

restoring-force  ~  /
caused by motion of  ( -1)

j j
x B

d dx
j
µ

−
=

−

Definition: is  average 
velocity of line along xj due 
to motion of atom at 
(xj-1 , yj-1 , zj-1), driven by 
minimization of free energy 

Definition: B is the mobility of 
the submolecule

-1

0

~ viscous drag vB
F
δ
δ
 ≡  
 
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3. Motion of Polymer Molecules

Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

( ) ( ) ( )
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
 ∂ ∂ = − −  ∂ ∂  

Example: In simplified 
limit that σ2=0
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3. Motion of Polymer Molecules

Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

Example

( ) 1
1

j j
j j

x B
x x
µ µ

−
−

 ∂ ∂
= − − ∂ ∂ 

In simplified 
limit that σ2=0
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3. Motion of Polymer Molecules

Velocity Gradient ↔ Entropy ↔ Potential Energy ↔ Force ↔ Atom Velocity

Example

( )
1

j j
j j

x B
x x
µ µ

+

 ∂ ∂
= − − ∂ ∂ 

>0?
<0?
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• Combine submolecule distortion from (1) 
advection and (2) diffusion in matrix 
representation

• e.g. N=3 submolecules

3. Motion of Polymer Molecules

1 1 1

2 2 2

3 3 3

2 1 0
1 2 1

0 1 2

x z x
x z B x
x z x

µ
α µ

µ

− ∂ ∂      
      = − − − ∂ ∂      

− ∂ ∂            

(1)  tracking  
with liquid

(2) restoring force 
from Brownian motion

( )
1 1

2j D
j j j

x B
x x x
µ µ µ

− +

 ∂ ∂ ∂
= − − + − ∂ ∂ ∂ 

Note: each “velocity” is with respect to the 
local coordinates

Note Rouse made correction in 1998, 
arguing that end subunits are more mobile, 

which changes A(1,1) = A(N,N) = 3 thus 
changing eigenvalues

Rouse, P.E., J. Chem. Phys., 1998

“Rouse Matrix”
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• Solution requires transformation of original “system” of 3N coordinates into 
an uncoupled set of equations

– Diagonalize Rouse Matrix, A (eigenvalue problem)

– Multiply by R-1

– Use above relations to rewrite an uncoupled set 
of equations in new“configuration coordinates”

3. Motion of Polymer Molecules

Note: each mode is NOT associated with 
one particular submolecule
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What does this transformation look like?
An illustrative example, again take σ2=0 for illustrative purposes

• Coupled “coordinate” system, N=3 submolecules, arbitrary configuration

• In (xj,yj,zj) space

• Eigenvalues and Eigenvectors

3. Motion of Polymer Molecules

1 2 3

1 2 3

1 2 3

1 1 1
0 0 0
1 0 1

x x x
y y y
z z z

          
          = = =          
          −          

1 1

2 2

3 3

2 1 0
1 2 1

0 1 2

z z
z B z
z z

µ
µ
µ

− ∂ ∂    
    = − − − ∂ ∂    
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3 3

1 2 1 0
0 1 2 1
1 0 1 2

x x
x B x
x x

µ
α µ

µ

− ∂ ∂      
      = − − − ∂ ∂      
      − − ∂ ∂      

1

0.59 0 0 0.5 0.71 0.5 0.5 0.71 0.5
0 2 0 0.71 0 0.71 0.71 0 0.71
0 0 3.41 0.5 0.71 0.5 0.5 0.71 0.5

R R−

− −     
     Λ = = = −     
     − − −     

Eigenvalues
Matrix of 

eigenvectors
Used in 

transformation
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An illustrative example, again take σ2=0 for illustrative purposes

• In (uj,vj,wj) space

• Transformed “coordinates”

3. Motion of Polymer Molecules

1 2 3

1 2 3

1 2 3

1 1 1
0 0 0
1 0 1

x x x
y y y
z z z

          
          = = =          
          −          

1 1

2 2

3 3

0 0.59 0 0
1.41 0 2 0
0 0 0 3.41

u u
u B u
u u

µ
α µ

µ

∂ ∂      
      = − − ∂ ∂      
       ∂ ∂      

1

0.5 0.71 0.5 1 1.71
0.71 0 0.71 1 0
0.5 0.71 0.5 1 0.2929

u R x−

     
     = = − =     
     − − −     

1

0.5 0.71 0.5 1 0
0.71 0 0.71 0 1.41
0.5 0.71 0.5 1 0

w R z−

     
     = = − = −     
     − − −     

1 1

2 2

3 3

0.59 0 0
0 2 0
0 0 3.41

w w
w B w
w w

µ
µ
µ

∂ ∂    
    = − ∂ ∂    
     ∂ ∂    

1 1

2 2

3 3

1 2 1 0
0 1 2 1
1 0 1 2

x x
x B x
x x

µ
α µ

µ

− ∂ ∂      
      = − − − ∂ ∂      
      − − ∂ ∂      

Compare to coupled 
result before:

But how does µ
depend on (u,v,w)?

Through f !
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• Now we’ll use 
– Uncoupled expression for configuration evolution

with
– Continuity

to
– Solve for f (which requires differentiation, neglecting α2 terms and higher, and 

solving a differential equation).  

– Solution:

– Now everything is known, and we will use 
f ↔ thermodynamic potential ↔ velocity in diffusion space

3. Motion of Polymer Molecules

We will soon see that τp are relaxation 
times, but this has not been proven yet
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• Represent rate of work done per unit volume, P, by application of a shearing 
stress using linear viscoelastic parameter notation

• Represent the same quantity, P, using result of kinetic theory

4. The Viscoelastic Properties

Definition of viscoelastic notation.  
S: shear stress
Relation to common notation: 1

2

'
"

η η
η η

=
=

Power per unit volume = stress * shear-rate

Power per 
molecule

Molecules 
per volume
per configuration

22

4. The Viscoelastic Properties

• Comparing the two expressions for P gives the result for the 
viscoelastic parameters

• Results
– This shows that τp are relaxation times
– Moduli represented by a generalized Maxwell model
– Found result independently of the distribution of τp

– Happens that Zimm model only changes distribution of τp

Dynamic Viscosity Dynamic Moduli
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4. The Viscoelastic Properties

• Take limit of ω→0 to determine the steady-flow viscosity

• Contribution of first mode τ1 is very large

( )
10

0

τη

η

( )
10 τη =

61%≈

24

4. The Viscoelastic Properties

• Approximation Argument: most information is contained in long modes
– Very fast relaxation processes are excluded from the model

– The longest 20% of the relaxation times (i.e. p<N/5) account for majority of 
response up to one decade before reaching maximum frequency allowed by 
theory

• Use this to simplify expressions for relaxation times, providing workable 
analytical results

– For p < N/5
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5. Discussion of Results

• Relaxations times do not depend on N, the number of subdivisions, so 
long as the length of a submolecule is sufficiently long to allow for a 
Gaussian end-to-end vector distribution

2
1 MWτ ∝

2

1/
S MW
B MW

∝
∝
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5. Discussion of Results

• Predicted viscoelastic moduli frequency response
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5. Discussion of Results
• Each mode contributes nkT at sufficient frequency

From MIT course 10.531, 
Macromolecular Hydrodynamics, 
Prof. Gareth H. McKinley
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Comparison with Experimental Data

Despite the various limitations 
suggested by Rouse, the primary 
disagreement with experimental 
data is apparently due to 
hydrodynamic interactions between 
submolecules, an effect added by 
Zimm

Note that both Rouse and Zimm predict 
a generalized Maxwell equation, the 
primary difference being in the form 
of the relaxation time distribution

1
Rouse 2

1
Zimm 3 / 2

p

p

ττ

ττ

≅

≅

Experimental data for polystyrene

Larson, R. G., Constitutive Equations, Ch. 8

Zimm, B.H., J. Chem. Phys, 1956

Rouse: 
Free-Draining

Zimm: 
Hydrodynamic Interactions
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Irony

• Rouse intended his theory to apply 
for DILUTE solutions, but 
researchers have discovered that it 
can be even more useful for 
concentrated solutions which are 
not entangled.

– No hydrodynamic interactions to 
consider

– Relaxations not affected by 
entanglements, so idea of “mobility”
still adequate

Ferry,J.D., Macromolecules, 1991

Ferry, J.D., Landel, R.F., Williams, M.L.,
J. App. Phys., 1955
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Overview of Rouse Model

• Physical model
– Polymer broken into submolecules

• Each submolecule is a chain with Gaussian end-to-end 
distribution, a.k.a. Gaussian chain

• “beads” and “springs” picture not introduced by 
Rouse, but common in texts such as DPL vol. 2 to 
explain Rouse’s model

– Motion:
• Advection by flow of “atoms” at ends of submolecules
• Diffusion by Brownian motion, driven by minimization 

of free energy and inhibited by viscous drag
– Forces:

• Linear restoring force from entropic springs
• Linear viscous drag at junction points
• Brownian force not discussed explicitly by Rouse, but 

captured by distribution functions

• Result
– Predicts generalized Maxwell model, with specified 

distribution of relaxation times
– Results given for linear viscoelastic tests

• Small amplitude oscillatory shear (SAOS)
• Zero-shear viscosity

Bird, Curtiss, Armstrong, and 
Hassager, Dynamics of Polymeric 
LIquids, vol. 2
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only to longest 20% of relaxation times


