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‘The necessary coordination of the motions of different parts of  coordinates, the coordination of all the motions of the pavts of
a polymer molecule is made the hasis of a theory of the linear a mulu:ulc fs resolve_d into a seriez of modes. Each mode has a
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“I found this paper very impressive, but failed to
understand it fully on first reading”

Dr. Bruno H. Zimm, April 20, 1978
Citation Classic, in CC/Number 27 ; July 2, 1979

“...I wrote to Rouse about this, and he quickly
straightened out my error”
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Big Picture: Kinetic Theory Models

Kinetic Thf,\crry for Dilute Polymer Solutions

e Current Topic:

A progressive ‘coarse-graining’ of structural information

Polymers in Dilute Solution — Im o
—
- In contrast to dilute particles P e = FEN
- In contrast to a polymer melt B e p = (nkgT)d,
|_ 7= De= .U/t
. The_focus of Rouse’s_paper is / « Bead-Spring Chain (Rouse/Zimn)
on linear polymers, dilutely | Hijp T, P
suspended in a Newtonian — =y & “ Ml =12,
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Overview of Rouse Model

* Physical model
- Polymer broken into submolecules
* Each submolecule is a chain with Gaussian end-to-end
distribution, a.k.a. Gaussian chain
* “beads” and “springs” picture not introduced by O]
Rouse, but common in texts such as DPL vol. 2 to
explain Rouse’s model
- Motion:
* Advection by flow of “atoms” at ends of submolecules
» Diffusion by Brownian motion, driven by minimization
of free energy and inhibited by viscous drag
- Forces:
* Linear restoring force from entropic springs
* Linear viscous drag of submolecule
¢ Brownian force not discussed explicitly by Rouse, but
captured by distribution functions
* Result .
- Predicts generalized Maxwell model, with specified T,=
distribution of relaxation times . pr
- Results given for linear viscoelastic tests 24BkT sin 2(N + 1)
¢ Small amplitude oscillatory shear (SAOS)
* Zero-shear viscosity

Bird, Curtiss, Armstrong, and
Hassager, Dynamics of Polymeric
Llquids, vol. 2
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Eq (33); approximation strictly applies
only to longest 20% of relaxation times

1. Motion of Liquid
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Solution to flow problem

G=voeToet, §=0, =0, T'=(iwp/mi. (1)

Conclusion: entire polymer experiences
constant velocity gradient for

Definition of velocity gradient

a=0&/0z sufficiently low frequencies

Taylor Series Expansion of Eq (1)

Cgmagre= —Vol'e T20ei![1—TeT2e/2--- ] (2)




2. Model of Polymer Molecule

Equilibrium distribution of end-to-end vectors:
all are assumed to be Gaussian

eg. ﬂ=q li'\h

"—l\l' 'Itl—GI\A. vecker
sulfarett @ suilivlom,
ok et Lo tmasients .

- End-to-End equilibrium distribution of full polymer

p(x, y, s)dzdydz= (b*/7%) exp[ — b*(x*+y*+ 2*) Jdxdyds

- End-to-End distribution of submolecule
¥ (x, v, 2)dxdydz = (8/x)}
Xexp[ — B+ y*+2*) Jdudydz.  (3)

2. Model of Polymer Molecule

Equilibrium distribution of molecular configurations:
Gaussian at equilibrium, but modified when polymer is stretched

N
Vidi= 1 ¥(x, y;, 5)dusdyyds;  Probability that
7=1 molecular configuration lies within dg;

= (B/mpN i erqﬂ["-ﬁ i (x:"-i-yf"f"zf)] )

X dxdydzdz,- - -dzy.

Definition of (x;, y;, z;), Definition of dg,
Vector location of end of submolecule j differential volume surrounding
each i-configuration

(1 Y15 21)s (90 Yoy Z3)y wee s (o Vi 20)
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3. Motion of Polymer Molecules

Velocity gradient causes two types of polymer motion
- (1) Atoms at junctions advect with velocity identical to surrounding liquid
NOTE: polymers do not affect solvent flow field,
i.e. “free-draining limit” with no “hydrodynamic interactions”

- (2) Coordinated Brownian motions of segments to drift toward their equilibrium
distribution

Model supported by observation that viscous losses tend to zero at high
frequencies

(1) Advection Rate of change of x-

component of position
(J':,')a= Z_;a:(:/ dz= (o 24 vector (xj) caused directly by
gradient

Note rate of change of y;
and z; components are zero

3. Motion of Polymer Molecules

(2) Coordinated Brownian motion: “the central part of the theory”

- When distribution of molecular configurations is perturbed it changes the
thermodynamic potentials of the molecules
- Velocity Gradient <> Entropy « Potential Energy <> Force «> Atom Velocity

AS=Fk Y s;In(n;/s;) Wall’s equation: change in entropy of
i avolume V'
Definition: Average number of -
ni= vV do;

molecules whose points lie in
do, at equilibrium

Definition: Similar to n;, but 8
it's the average number in dg,
when exposed to velocity
gradient o

10




3. Motion of Polymer Molecules

| Velocity Gradient «» Entropy < Potential Energyl» Force «» Atom Velocity

AA=—TAS Change in Helmholtz free
energy

wi=0(AA)/3si=kT[1+In(s;/n:) ] Thermodynamic potential:
caused by entrance of
molecule into dg;

si=n(1+ af—l—M Assume small variation of s;
from equilibrium n,
_ Rewrite energy in terms of
u= kT[1+ln(1+af):| I velocity gradient
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3. Motion of Polymer Molecules

Velocity Gradient <> Entropy <> Potential Energy <> Force <> Atom Velocity

(%,),., = B.restoring-force Definition: () is average
velocity of line along x; due
restoring-force ~ —dyu/dx to motion of ator-n at
(xj_1 Vil zj_l), driven by

minimization of free energy

caused by motion of (j-1)

Definition: B is the mobility of
the submolecule

B= (ﬂj ~ viscous drag "'
S5F ),
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3. Motion of Polymer Molecules

Velocity Gradient <> Entropy H|Potential Energy < Force <> Atom Velocity I

K 3

. 0, 0
¥ (s), a2 2

J J

o\ _ _p| O Ou
(%), = B{axj ax, }

Jj+l

Example: In simplified

limit that °=0
e (ii\i"- sheld oe >0 y wrt local ceotd:
tocal Syster which i3
oo Wole: %y (4] Brd ot il
%> O of veckor C"j}\ij,?:‘)
}
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3. Motion of Polymer Molecules

Velocity Gradient <> Entropy <—>|Potentia| Energy < Force <« Atom Velocity l

Example
: %Y. >0 local coorhs
el (3 o sheld be ,wet local coot
COHI'AS Yobe: x‘.‘{o g\w ot dal
%> O of veckor C‘fﬁjj,‘ﬁ)
i
i) —_p| OH_ oK
» (xj)j—l_ B|:6xj ale}
’.,
i ’ ® <0
" 3%
P miniad
Q.r )H"D i" >O
In simplified M4
limit that 62=0

- 6‘5)&4 >0 s ag&c\'&t
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3. Motion of Polymer Molecules

Velocity Gradient <> Entropy H|Potential Energy < Force <> Atom Velocity I

Example

?
F..ﬁ»\-e.muﬂ' Li:b}. <hoold hoe :8? ; wrt loeal cosrds

Make - * Lo
Fyrt g

o\ _ ol Ou  ou
(x/)j_ B|:axj a_x»/+l:|

%<0
¥ WA O

ERS

® iR
Ge %0 @:Di 70; as vﬁ-?a(:\‘eé
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3. Motion of Polymer Molecules

e Combine submolecule distortion from (1)
advection and (2) diffusion in matrix ) 0 0
representation (xj)D =—B{—”+2'u—”

éxH 6xj 6x}.+,

X;=az— BA{V .u}
H_) | 2

(1) tracking (2) restoring force
with liquid from Brownian motion

* e.g. N=3 submolecules

X, z, 2 -1 0] ou/ox
X, |=a|z, |-B|-1 2 -1| du/ox,
X z

3

: 0 -1 2| ou/éx,
%/—/

Rouse Matrix Note Rouse made correction in 1998,

arguing that end subunits are more mobile,
which changes A(1,1) = A(N,N) = 3 thus
Note: each “velocity” is with respect to the changing eigenvalues

local coordinates Rouse, P.E., J. Chem. Phys., 1998 |




3. Motion of Polymer Molecules

* Solution requires transformation of original “system” of 3N coordinates into
an uncoupled set of equations

- Diagonalize Rouse Matrix, A (eigenvalue problem)

X;= az_BA{v.rP-} R_IAR=A2D\P6FGJ:

pr
Ap=4 sint————

- Multiply by R'! 2(N+1)
R'x,= aR"z2— BRZARR-{ ¥ .}
u=R"x,
—i —_
R{V.u)={Vus} v=R-y,
- Use above relations to rewrite an uncoupled set w=R"z.

of equations in new“configuration coordinates”

| u;=aw—BA{V.u} I

Note: each mode is NOT associated with
one particular submolecule

17

3. Motion of Polymer Molecules

What does this transformation look like?
An illustrative example, again take 02=0 for illustrative purposes

* Coupled “coordinate” system, N=3 submolecules, arbitrary configuration

Glahal Cootds
x| [1 x| [1 X 1 2 <
»|=|0 » |=|0 |=|0 /_-\
z, 1 z,] |0 zy -1
. In(xj,yj,zj)space
X, 1 2 —1 0 ou/ox, [2 2 -1 0 ou/e,
% |=al 0 |-B[-1 2 -1 dou/ox, s |= -B|-1 2 -1|ou/oz,
X, -1 0 -1 2| dufox, EA 0 -1 2 | ouloz
¢ Eigenvalues and Eigenvectors
059 0 0 0.5 -0.71 —0.5] 05 071 05
A= 0 2 0 R=071 0 071 R'=/-071 0 0.71
0 0 341 05 071 -05] -0.5 071 -0.5
. Matrix of Used in
Eigenvalues

eigenvectors

transformation

18




3. Motion of Polymer Molecules

An illustrative example, again take 02=0 for illustrative purposes

Glahal Cootds
. In(uj,vj,wj) space - %[__.3(
\ L)
05 071 0571 1.71 /_-\
u=R'x=[-071 0 071|1|=| o0
05 071 -05]|/1] |-0.2929 e %! u!
05 071 0571 0 = (1) 2 =g 7= 01
w=R'z=[-071 0 071|| 0 |=|-141 A % sl =
05 071 0.5/ -1 0
¢ Transformed “coordinates” Compare to coupled
result before:
i, 0 0.59 0 0 | ou/ou X, 1 2 -1 0| ou/ox
i, |=a|-141|-B| 0 2 0 ||du/ou, X, |=a| 0 |-B|-1 2 -1| ou/ox,
i, 0 0 0 3.41| oufou % -1 0 -1 2 |ouféx,
W, 0.59 0 0 J[ou/ow
W, |=—-B| 0 2 0 | du/owm, But how does u
Wy 0 0 3.41| ou/ow, depend on (u,v,w)?
Through f'!
19

3. Motion of Polymer Molecules

¢ Now we'll use

Uncoupled expression for configuration evolution
with i

Continuity p= —div(pV)

to

Solve for £ (which requires differentiation, neglecting o? terms and higher, and
solving a differential equation).

u;=aw—BA{V.u}

Solution:

Upllp

> 2D, (14iwry)

p=1

Tp= (48D p)ml = o’(ﬁBkTh,,)_l

We will soon see that T, are relaxation
times, but this has not been proven yet
Now everything is known, and we will use
f > thermodynamic potential <> velocity in diffusion space

w=kIT14+In(14+af)]
n,=aw—BA{V.u}

20




4. The Viscoelastic Properties

* Represent rate of work done per unit volume, P, by application of a shearing
stress using linear viscoelastic parameter notation
S=Re "Ea =g coswl sinwt] Definition of viscoelastic notation.
{"7 } Dh +T’2 ] S: shear stress
Relation to common notation: 7' =7,

P=Sa coswt =
= o[ 1 cos?wi+n, sinet coswt]. Power per unit volume = stress * shear-rate

* Represent the same quantity, P, using result of kinetic theory
Viowve n¥(1+af)d;
%(_) ~

Power per Molecules
molecule per volume
per configuration

P, =n.0f cosiwt
a apkTw,

~(coswl+ewry, sinwt)

N cos*wli+wT, sinwt coswt 2D (1)

Po=ainkTe® 3
6D, (14-w?r,%)

p=1

1hp= otolt!y COSWE
21

4. The Viscoelastic Properties

* Comparing the two expressions for P gives the result for the
viscoelastic parameters

Dynamic Viscosity Dynamic Moduli
N T N wir.?
m =n,+nkT 3 Gi=nkT Y ——
p=1 140?72 =1 14?72
Noowry N wT
_ »
na =nkl 2. Tt Ge=wn+nkT 3 :
p=1 14w?r, et 1-|-w21’,,2
* Results

- This shows that 7, are relaxation times

- Moduli represented by a generalized Maxwell model

- Found result independently of the distribution of T

- Happens that Zimm model only changes distribution of T

P,n. —1
Tp= 0'2[243731" sian_]
' 2{N+1}

22




4. The Viscoelastic Properties

¢ Take limit of ®—0 to determine the steady-flow viscosity

ngt N -
Ho=nF— 2 [sinm]
4B L 28 +1)
no? N (N+2)
=t
36B

» Contribution of first mode t, is very large

T —1
(m), = M’[24B sinz——]
' 2(N+1)

(770)71 ~ 6(N+1)2 ""'-'6 610/
o weNVE2) 2

23

4. The Viscoelastic Properties

* Approximation Argument: most information is contained in long modes
- Very fast relaxation processes are excluded from the model

- The longest 20% of the relaxation times (i.e. p<N/5) account for majority of
response up to one decade before reaching maximum frequency allowed by
theory

* Use this to simplify expressions for relaxation times, providing workable
analytical results
- Forp<N/5

60p—n,) &
x p=1 pratr =

PO o —
T 6npBRT  6wpBRT

Tp

N oot
Gi=nkT >, ———,
r=1 pit-wir?

24




5. Discussion of Results

* Relaxations times do not depend on N, the number of subdivisions, so
long as the length of a submolecule is sufficiently long to allow for a
Gaussian end-to-end vector distribution

a*N?
fy, =
6 p2BRT
B=KN
N =5?
r,=8Y (6K7x*p"kT)
S? o« MW
Bocl/ MW
7, o MW?
25
5. Discussion of Results
¢ Predicted viscoelastic moduli frequency response
0.01 1 | 0.0
' wr, ' '
Fjc. 2. Contribution of the polymer to the components of the
complex rigidity relative to the contribution of a single relaxation
mode to the instantaneous rigidity. 26




5. Discussion of Results

Each mode contributes nkT at sufficient frequency

Fouse Spoctum for N = 100
—
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Prof. Gareth H. McKinley

Despite the various limitations
suggested by Rouse, the primary
disagreement with experimental
data is apparently due to
hydrodynamic interactions between
submolecules, an effect added by

Zimm

Note that both Rouse and Zimm predict
a generalized Maxwell equation, the
primary difference being in the form
of the relaxation time distribution

~ 4
TRouse = 2
p

~_ 4
32

z-Zimm =

Zimm, B.H., J. Chem. Phys, 1956

O'pp

Comparison with Experimental Data

S E— ._m

Q
== g9

Zimm:

Rouse:
Hydrodynamic Interactions

Free-Draining

L L
H

tog wh
Experimental data for polystyrene

Larson, R. G., Constitutive Equations, Ch. 8
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Irony

* Rouse intended his theory to apply Rouse did not approve of applying his theory to

. concentrated solutions, undiluted linear polymers, or

for DILUTE solutions, but networks. However, others did not hesitate to try mod-

researchers have discovered that it ifications. For an undiluted amorphous polymer, simple

substitution of density for concentration provided ap-

can be even more useful for proximate agreement in a limited frequency range with

. . viscoelastic properties when the molecular weight was less

concentrated solutions which are than the critical value for manifestation of entangle-
not entangled. ments. 2552

- No hydrodynamic interactions to Ferry,).D., Macromolecules, 1991
consider

- Relaxations not affected by
entanglements, so idea of “mobility’
still adequate

” Ferry, J.D., Landel, R.F., Williams, M.L.,
J. App. Phys., 1955

Journal
of
Applied Physics

Extensions of the Rouse Theary of Viscoelastic Properties to Undiluted Linear Polymers®
powee T Pumur, Rosanr F, Luspar, asp Muicos L Wit
Dichartmem of Chemirty, Caiversiy of Wissomrin, W sdisen, Wiseomsin
[

parimeter 1a  aherat region, the
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Overview of Rouse Model

* Physical model
- Polymer broken into submolecules
» Each submolecule is a chain with Gaussian end-to-end
distribution, a.k.a. Gaussian chain
* “beads” and “springs” picture not introduced by D)
Rouse, but common in texts such as DPL vol. 2 to 2
explain Rouse’s model
- Motion:
* Advection by flow of “atoms” at ends of submolecules
¢ Diffusion by Brownian motion, driven by minimization
of free energy and inhibited by viscous drag
- Forces:
* Linear restoring force from entropic springs
¢ Linear viscous drag at junction points
* Brownian force not discussed explicitly by Rouse, but
captured by distribution functions
* Result o2
- Predicts generalized Maxwell model, with specified T,=
distribution of relaxation times . T
: : ; - 24BkTsin?| %
- Results given for linear viscoelastic tests Z(N + 1)
* Small amplitude oscillatory shear (SAOS)
* Zero-shear viscosity

Bird, Curtiss, Armstrong, and
Hassager, Dynamics of Polymeric
Llquids, vol. 2

R
P~ 61 BkTp*

Eq (33); approximation strictly applies
only to longest 20% of relaxation times




