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Motivation of the problem

• The main application is the understanding of fiber-drawing
process of polymer melts, e.g. Dacron (poly(ethylene
therephtalate)), polypropylene, Nylon (polyamide). VERY relevant
industrially.

• Valuable information that we want with respect to the boundary
conditions: radius, extension rate/jet shape (which has a strong
influence on fiber properties)

• Also relevant is the stability of the jet (Pearson & Matovich 1969,
Spinning a Molten Threadline, Stability), the stable operating space,
and what parameters affect spinnability (=stability far from orifice).

• It can be extended to a lot of problems : non-isothermal, planar
extrusion, steady jet on a planar surface...



Definition of the problem

We consider
only that part

Variables
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Definition of the problem

We consider
only that part

Variables

X=0

     x

x+dx

Normal
vector n

n
θ

Sin(θ) ≈ -a’
Cos(θ) ≈ 1 + o(a’)

Therefore
n = (r-a’x)/(1+a’2)1/2   (7)
(beware typo in paper)



Flow equations
• Continuity

Div(u)=0 gives, in cylindrical coordinates:

• Conservation of momentum

!
Here τ is the total
stress tensor,
(usually written σ,
with τ being the
deviatoric stress)
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in steady state 
and in cylindrical, gives:



Boundary conditions

• Radial BC (at r=a(x)):
– Kinematic : the surface is a streamline, thus

– Stress: free surface, no shear stress
The Laplace pressure difference is σC, where C is the sum of
the 2 curvatures : 1/a and -a’’1/2/(1+a’2)3/2



Boundary conditions

• Upstream and/or downstream BCs:

– imposed initial flow rate

– plus one of the following:
• Imposed final speed

• Imposed final force



Approximation scheme
• Development in power of a’, which is <<1

• Equations (22) through (30) are a proof of self-consistency, and a
guide towards computing higher-order terms.



Approximation scheme (cont’d)

•Thin jet approximation : 0-
order term are independent of r

•1st-order momentum equation

-The trick to easily derive (20) from (3) is to use the integral form, and retain
only 1-order terms (top of page 515). That way, a’ shows up only in the
change of area, and 1st and higher order terms of the expansion cancel out.

- a and a’ are converted into v and v’ using the conservation of flow rate (11)



Approximation scheme (cont’d)

Scaling of the different terms with a parameter ε

Analogous solution:
terms must keep the same scaling even for a’    0

From this, they deduce the scaling of the parameters (33):

Relationship between α and β
given by a’ scaling and β = γ



Solutions
One need to provide a constitutive equation, then plug it into (20)
• Newtonian case

– Constitutive equation
– Momentum equation

– The relative importance of the different terms is given by
• Viscosity: 1
• Inertia: Reynolds number Re
• Gravity: Froude number Fr,

or gravity number B=Re/Fr
• Surface tension: Weber number We,

or capillary number 1/Ca=Re/We

Inertia     Gravity              Viscosity                      Surface tension



Solutions (cont’d)

• Newtonian case
– Viscous-only solution (Re, Re/Fr, Re/We <<1)

– Visco-inertial solution (Re ≈ 1, Re/Fr, Re/We <<1)

Depending on the BC

Sketch of the solutions for a0=1mm,
and arbitrary constants



Solutions (cont’d)
Newtonian case (cont’d)

– Visco-gravitational solution (Re/Fr ≈ 1,
Re, Re/We <<1)

– Viscosity and surface tension (Re/We ≈ 1,
Re, Re/Fr <<1)

– Inviscid solutions (Re, Re/Fr, Re/We >>1)
are not of concern here. They can be
found for example in The Mechanics of
Liquid Jets, by J.N. Anno.

Comes from Trouton, (1906). Determining the constants c1 and c2 is easier
said than done…
Ribe (2004) gives another solution, for the BC (i), which has a small range of
application: 2

1 1 1cos ( / ( ))v v gQ v x x!= +



Solutions (cont’d)

• Non-Newtonian case: a lot of models are available
– A simple one is the inelastic fluid model: the newtonian viscosity is

replaced by a Trouton viscosity

This gives a momentum equation of the form (45):

Here again, different models for the viscosity. The simplest is the
power-law model:

The solution is easy for viscous-only case:

As expected, shear-thinning hinders spinnability.



Solutions (cont’d)
• Non-Newtonian case: a lot of models are available

– A second step towards difficulty is the second-order fluids model:

This leads to a third-order differential equation for the conservation
of momentum:

– To solve it, they use an expansion in powers of a Deborah number Δ
In dimensionless form,

Then, every order gets its own equation (and needs its own 2
BCs…)
0-order:

1st-order:

nth-order



Solutions (cont’d)

• Non-Newtonian case
They give the solutions for the first two orders
0-order:

gives

1st-order:

gives

(65) through (71) discuss the validity of the solution, depending on
the BCs (the perturbation method loses ground for Δ too large) and
give another derivation route.

Depending

on the BC



Extension to Nonisothermal flows

One needs:
• An equation of state (which can be T-dependent)
• To include temperature convection in flow equation

• One radial and two axial boundary conditions for temperature. The
most obvious is T=T1 for the melt reservoir, T=T0 for the ambient air,
and a flux at the interface proportional to T-T0 ((73) to (75)).



Extension to Fiber drawing
and Film casting stability

• Jet stability :
Pearson & Matovich 1969, Spinning a Molten Threadline, Stability.
They take in account different causes of instability : radius or speed
varying at the origin, speed or tension varying at the wind-up (but they
don’t take in account extension thickenning, which should play a role in
stabilizing…).

• Film casting :
Yeow (J. Fluid Mech., 1974). They problem is no longer axisymmetric.



Extension to jet on a plate
• Steady jet:

Cruikshank and Munson (1982).
“v=0 at the plate” boundary
condition.

• Coiling jet:
The speed at the plate is non-zero, non-
imposed: we lose a boundary condition.
Ribe (2004) gives a scaling argument for
the visco-gravitational case.



Three different problems
• Matovitch & Pearson : Drawn fiber, ie final

speed or force imposed.
• Cruikshank & Munson : Steady jet on a plate,

ie speed = 0 at the plate.
• Our problem : Non-steady jet on a plate, ie,

non-imposed, non-zero speed at the plate.


