Thixotropy vs wall slip in suspensions

Wonjae Choi

Papers:

- Dullaert, Mewis: Thixotropy: Build-up and breakdown curves during flow (JoR, 2005)
 - Claimed the first robust stress measurement of the thixotropic system
 - Introduced de-embedding of rheometer's transfer function from the output data
- Dullaert, Mewis: A model system for thixotropy studies
 (Rheol Acta, 2005)
 - Detailed description on the previous 'robust thixotropic system'
 - Covered various issues which was problematic for previous researches and was reduced with their new compound
 - Covered wall-slip phenomenon and remedy for it

Experiments about thixotropy

Difficulties in experiments

- □ While there are various models & theories about thixotropy, there are few reliable experimental datasets
- Primary reason for this is the difficulties involved in measuring thixotropic system with enough accuracy

Main objective of this paper

 Building robust thixotropic system which supports repeatible & reliable measurements

Recall:

- Definition of thixotropy in this paper
 - □ Change of floc structure resulting in varying viscosity
 - Does not necessarily include viselasticity

Why is measurement difficult?

- Implemental artifacts
 - Wall slip
 - Heterogeneous shear rates
 - Gap size effect
 - □ Rheometer's transfer function
 - Memory of floc's microstructure
 - Evaporation of solvents
 - Particle sedimentation, change in particle's wetting property, adsorption

Plan

Specifications:

- Rheometer:
 - MCR300 stress controlled Rheometer
 - 12.5mm plate with 0.035 / 0.07 rad (sand blasted to reduce slip)
 - □ ARES rate controlled Rheometer
 - 12.5mm plate with 0.04 rad
 - Rheometer's transfer function was de-embedded in JoR paper

$$H(s) = \frac{F_O^{me}(s)}{F_I(s)} = \frac{\sum_{i=0}^c a_i s^i}{\sum_{j=0}^d b_j s^j}$$

Specifications:

- Thixotropic system
 - □ Fumed silica particles Aerosil R972
 - Transparent, availability in wide range of surface treatments
 - Hydrophobic, 16nm particles
 - □ Paraffin oil Riedel-de Ha e n 18512
 - Non-volatile, 0.16pa s viscosity
 - □ PIB (Poly(isobutylene)) is added to control viscosity & particle interaction: 27wt%
 - 45pa s own viscosity, 0.65pa s total viscosity
 - □ Volume fraction of particle : 2.5vol% ~ 3.0vol%
 - Upper limit : wall slip & yielding
 - Lower limit : sedimentation & weakness

Effect of PIB:

- Drastic change in viscosity
- System's recovery time also changes significantly

Fig. 1 Effect of PIB on the flow curve of a 1.5 vol% fumed silica dispersion in a mixture of paraffin oil and PIB

Fig. 2 Effect of PIB on the build-up behaviour after a stepwise reduction in shear rate from 10 s $^{-1}$ to 0.1 s $^{-1}$ on a 1.5 vol% fumed silica dispersion in a mixture of paraffin oil and PIB

Effect of PIB: Slip

Preparation :

- □ 25s⁻¹ for 200sec to ensure steady state
- □ TiO₂ powder was used as a marker

Without PIB add

With PIB add

Effect of temperature & humidity:

- High temperature changes the adsorption of PIB to silica
- Humidity highly affects the yield stress

Fig. 3 Stress evolution at a shear rate of 0.1 s $^{-1}$ during a quenching experiment from an initial temperature of 50°C to 20°C at constant relative humidity on a 1.5 vol% fumed silica dispersed in paraffin oil and PIB (50 wt%)

Fig. 5 Effect of thermal history and relative humidity of environment on the flow curve of a 2.7 vol% dispersion of fumed silica in a mixture of paraffin oil and PIB (30 wt%)

Test result:

□ KWW, aka stretched exponential model (1970)

Effect of de-embedding

Constant λ curve

FIG. 6. Constant λ curve for an initial shear rate of 0.05 s^{-1} obtained with either the standard procedure (\blacksquare) or the present one (\triangle).

Model evaluation

- Prove or disprove the predictive ability of major models :
 - □ Cheng's constitutive + single kinetic model (1965)

$$\frac{\sigma(t) = F[\dot{\gamma}(t), \lambda(t)]}{d\lambda(t)/dt = G[\dot{\gamma}(t), \lambda(t)]} \xrightarrow{d\sigma} \frac{d\sigma}{dt} = \frac{\delta F}{\delta \lambda} G(\dot{\gamma}_e, \lambda) = h(\dot{\gamma}_e, \lambda).$$

Model evaluation

- Prove or disprove the predictive ability of major models :
 - □ Houska's 1D model (2002)

$$\sigma(\dot{\gamma},t) = \lambda \sigma_{v,0} + \lambda K_{st,0} \dot{\gamma}^n + K_{\infty} \dot{\gamma}^n$$

$$\frac{d\lambda}{dt} = -k_1 \dot{\gamma}^a \lambda + k_3 (1 - \lambda)$$

□ Coussot's model (1993)

$$\sigma(\dot{\gamma}, t) = \sigma_{el}(\dot{\gamma}, t) + \eta_{\infty}\dot{\gamma}.$$

$$\frac{1}{G_0}\frac{d\sigma_{el}}{dt} + \frac{\lambda^{-n}-1}{n}\frac{\sigma_{el}}{\eta_{st,0}} = \dot{\gamma}.$$

Model evaluation

Build up test from 1/s (Dashed – Houska, solid – Coussot)

Break down test from 0.1/s (Dashed – Houska, solid – Coussot)

Conclusion

- Reliable & robust thixotropic system was achieved (at least, they say so)
- Major ideas were :
 - De-embedding of rheometer's transfer function
 - □ Adding of PIB for viscosity & interparticle attraction reduction
- Model evaluation was tried for single exponential model, Houska's 1D model and Coussot model
 - □ Showed evidence why single exponential can't work
 - □ Compared strength & weakness of Houska / Coussot model